SECTION 5

METER & SERVICE EQUIPMENT

General Rules and Regulations ... 5-1-1
Equipment Assembly and Installation ... 5-1-2
Indoor Metering, Grounding, and Bonding ... 5-1-3
Meter Enclosure Connections ... 5-1-4
A-base and B-base Meter Enclosure – Customer Installation 5-1-5
Bonding and Ground Circuits .. 5-1-7 and 5-1-8
Repair and Refastening of Equipment ... 5-1-9 and 5-1-10

METERS & METER ENCLOSURES

Obtaining Metering Equipment ... 5-2-1
Installation Instructions ... 5-3-1 to 5-3-3
Meter Enclosure Specifications .. 5-3-4

SINGLE PHASE ENCLOSURES

Single-Phase 200A Specifications ... 5-3-5
Single-Phase 320A Specifications .. 5-3-6, 5-3-7, 5-3-7.1 and 5-3-7.2
Single-Phase 200A 2-position Horizontal Specifications 5-3-8 and 5-3-8.1

MULTIPLE OCCUPANCY BUILDINGS

Multiple Meter Installation Methods .. 5-3-9 and 5-3-9.1
Vertical Meter Stacks .. 5-3-10 and 5-3-11
Commercial Metering Switchboard .. 5-3-12
Indoor Trough Installation--1Ø .. 5-3-14 and 5-3-15
Outdoor Terminal Cabinet Installation--1Ø ... 5-3-16
Outdoor Trough Installation--1Ø .. 5-3-17
Commercial Metering Switchboard Installation .. 5-3-26 and 5-3-27

THREE PHASE ENCLOSURES

Poly-Phase 20A and 200A Specifications .. 5-3-18 to 5-3-19.2
Outdoor Terminal Cabinet Installation--3Ø ... 5-3-20
Outdoor Trough Installation--3Ø ... 5-3-21
Indoor Trough Installation--3Ø ... 5-3-22
Self-Contained Meter Inspection Checklist--3Ø .. 5-3-23 to 5-3-25
CURRENT TRANSFORMER CABINETS

Acceptable Cabinets and General Information .. 5-4-1 and 5-4-2
Current Transformer Ordering Routine .. 5-4-3
Table of Current Transformer Sizes ... 5-4-3
Service Change Routine .. 5-4-4
CT Cabinet Fabrication Standards ... 5-4-5 and 5-4-6
CT Cabinet Installation Standards ... 5-4-7 and 5-4-8
Service Equipment Assembly (Overhead) .. 5-4-9
Clearance Requirements .. 5-4-10
Bus Bar Service Details .. 5-4-11
Service Equipment Assembly .. 5-4-12 to 5-4-14
CT Cabinet Inspection Checklist ... 5-4-15 to 5-4-18
Transocket Installations .. 5-4-19 to 5-4-20
Blade Mount (Window Type) CTs ... 5-5-1

SWITCHBOARDS

CT Compartment Fabrication Standards ... 5-6-1 to 5-6-2.1
Meter Enclosure Mounting ... 5-6-3
Meter Wiring Raceway Installation .. 5-6-4
Bus Head Drilling Details (Overhead Service) ... 5-6-5
Bus Bar Drilling Details and Dimensions ... 5-6-6 and 5-6-7
Template for Measuring Bus Bar Spacing .. 5-6-8
CT Compartment Door Sealing Details ... 5-6-9 and 5-6-10
Acceptable Switchboards.. 5-6-11 and 5-6-12
Switchboard Inspection Checklist ... 5-6-13 to 5-6-15

DEMAND RECORDER INSTALLATIONS

Routine for Metal Melting R1.1 and Process Heat R1.2 5-7-1 to 5-7-2
Equipment Assembly Drawings .. 5-7-4 and 5-7-5

ACCEPTABLE METERING ENCLOSURES AND MODULES

Acceptable Metering Enclosures and Modules .. 5-8-1 to 5-8-17

FAULT CURRENT

Current available to a fault ... 5-9-1
METER AND SERVICE EQUIPMENT

(a) To avoid unnecessary delay or expense, the customer or the customer’s representative shall consult the appropriate DTE Electric Service Center before starting any wiring. (See pages 1-2-1 through 1-2-4 for Service Center locations.)

(b) Service equipment assembly drawings showing the space required and the equipment configuration may be obtained from the DTE Electric Service Center upon request.

(c) The DTE Electric Planner will determine the location of the building service and the meter equipment.

(d) The customer’s service equipment must be installed and maintained according to the rules of the inspection authority having jurisdiction. The rules of the Company are in addition to and not a waiver of the rules of the inspection authority. In areas where there is no inspection authority, the wiring installation must comply with the requirements of the National Electrical Code and any Electrical Rules supplementary thereto.

(e) The Company reserves the right to inspect customer’s wiring to insure that safe methods of construction have been followed. By performing such an inspection, the Company does not assume responsibility for performance of the installation.

(f) Covers of all enclosures such as wireways, pull boxes, and switch or circuit breaker cabinets containing conductors carrying unmetered current shall be equipped with DTE Electric approved sealing devices.

(g) Wires carrying metered and unmetered current shall not occupy the same raceway, cable assembly, fitting box, or other enclosure.

(h) Customers or contractors are not authorized to break seals to open or move meter connection cabinets without obtaining permission from an authorized representative of the Company.

(i) The customer’s service equipment and meter enclosure(s) must not be located under an operable window.

2. Customer’s Installation.

(a) Service entrance wiring consists of all the wiring from the service connection to and including the meter equipment and service disconnecting and overcurrent protective means. This equipment shall be installed in accordance with applicable laws and the rules of the governmental authority having jurisdiction, the National Electrical Code, and the rules of the Company.
(b) The customer shall provide, at a location approved by the Company and free of expense to the Company, a suitable place for the meter or meters and any other supply, protective, or control equipment of the Company which may be required in the delivery of the service.

3. **Multiple Service Entrance Conductors--Overhead.**

 Refer to Overhead Service Installation Section 4, page 4-4-4.

4. **Multiple Service Entrance Conductors--Underground.**

 Refer to Underground Service Installation Section 3, page 3-3-1.

5. **Identification of Service Entrance Conductors.**

 Refer to Overhead Service Installation Section 4, page 4-4-4.

6. **Service Equipment Assembly.**

 (a) The DTE Electric Service Center will furnish service equipment assembly diagrams indicating the space required and the manner in which the equipment is to be assembled.

 (b) The location of the service and metering equipment will vary with the conditions peculiar to each installation. Therefore, the DTE Electric Planner will determine the assembly and location of all such equipment.

7. **Service Equipment Installation.**

 (a) When a new commercial building or when adding load to an existing building is planned, it is important that the customer or his architect submit drawings to the DTE Electric Service Center *before construction begins*. This will allow the Company to determine the size and location of the service and metering equipment and to issue the necessary orders in advance of the customer’s need date.

 (b) In instances where, at a later date, a new commercial building could be subdivided into multiple units, the design of the electric service should provide for ease of conversion to separate metering of each unit.

 (c) Service and metering equipment shall be installed in accordance with the service equipment assembly diagrams assigned to each installation by the DTE Electric Planner.

 (d) Metering equipment shall not be used as a raceway or service terminal to feed other meter enclosures except as shown on service equipment assembly drawings.
8. **Meters for Residential and Commercial Services.**

In general, meters for residential and commercial services will be installed outdoors. If possible, meters will be located directly below the service point on overhead services and directly above the service point on underground services. The DTE Electric Planner must approve any deviations.

9. **Indoor Metering.**

(a) Indoor metering **must be approved** by a DTE Electric Planner.

(b) Indoor metering equipment will be located as near as possible to the service entrance, in a clean dry place, reasonably secure from injury, not subject to vibration and readily accessible for reading and testing.

(c) In multiple occupancy buildings, where the meters are installed indoors, they shall be located within the premises or in a common location accessible to the tenants and to DTE Electric representatives.

(d) At the discretion of the Company, meter rooms may be required in buildings where more than four meters are grouped in one location. The room is to be accessible at all times to authorized representatives of DTE Electric and to customers. The Company requires this room to be not less than 4 feet wide to protect its equipment.

10. **Grounding and Bonding of Service Equipment.**

(a) The service neutral and the equipment supplying lighting and power shall be grounded at the customer’s lighting switch unless grounding provisions at that point are inadequate.

(b) When such exceptions are encountered, the grounding conductor may be terminated at the neutral bus of a current transformer cabinet. A lug of correct capacity will be added to a pass-thru bolt and will allow the customer to connect on the outside of the CT cabinet. On the inside, it will be connected to one of the bolts that secure the neutral bus to the back of the cabinet.

(c) A DTE Electric representative will check such grounding connections for proper installation.

(d) The customer will supply insulated neutrals where required by *National Electrical Code* for those installations where the meters are on the load side of the customer’s main disconnect and main bonding jumper. See 2014 NEC250.142 (B) for exceptions.

(e) Any bond between the meter enclosure and joint users that interferes with removing the cover on the meter box is a violation of NEC 250.94 (3). The joint user who created the violation must correct the situation.
11. Meter Enclosure Connections.

(a) An additional service disconnect will be connected in series and in close physical proximity to the additional meter enclosure when required for separately metered water heater or space conditioner circuits. Unless authorized by local electrical code, each service drop or lateral shall be wired through a single set of disconnects. (See SIM-ESIG 3-3-1, (1), (a) and 4-4-1 (j), (k) prior to construction.) 120-volt circuit shall not be connected in a meter enclosure. No Exceptions.

(b) A meter that serves a remote building with overhead or underground conductors shall have a service disconnect grouped with the service main disconnect or within the main panel. This provides overcurrent protection and allows the customer to safely disconnect these service conductors in the event of contact or damage. Otherwise, DTE Electric would have to respond to any emergency to disconnect the customer-owned conductors and remove any hazards.
Customer’s Installation: A-base or B-base Meter Enclosure

1. When a repair or upgrade to a customer’s installation requires replacement of the service entrance conductors, or an addition to the existing conductors, the customer/contractor will:

 • Contact the area Service Planner to assess the existing meter equipment.
 • Replace the existing A-base or B-base Meter Enclosure.

NOTE: Under no circumstance will an existing A-base or B-base Meter Enclosure have the service entrance wiring replaced, modified, or added to.
BONDING AND GROUND CIRCUITS

The primary purpose of bonding and ground circuits is to provide a permanent low impedance conductive path back to the source of electrical supply so that maximum possible ground-fault current will go through the Over Current Protective Devices (OCPD). If the conductive bodies become energized, it will cause the OCPD to quickly open all ungrounded phase conductors and limit the voltage to ground (See 2011 NEC 250).

When making electrical connection to bonding and ground circuits any grease, corrosion, non-conductive paint, enamel, or similar coating that will impede electrical conductivity shall be removed at threads, contact points, and contact surfaces (See 2011 NEC 250.96 (A)).

On alternating current (AC) systems with more than two wires, the neutral conductor carries the unbalanced load current back to the source of supply. On two wire systems, the neutral carries all return current. This conductor must be continuously insulated with a white, gray, or white striped jacket. It must be routed with the phase conductors. It must be contained in the same raceway and bonded to each service disconnecting means. (See 2011 NEC 250.24 C, 300.3) In most cases it will be sized the same as the phase conductors. It shall be connected to the bonding and ground electrode system at only one point. This will prevent multiple current paths back through ground. Overhead lines service drops do not need to have an insulated neutral. This conductor can serve as the bonding conductor on service equipment. (See 2011 NEC 250.92 B(1), 250.142 (A))

NEUTRAL CURRENT WILL FLOW THROUGH THE GROUND CIRCUIT IF THERE IS MORE THAN ONE MAIN BONDING JUMPER OR PARALLEL PATH FOR NEUTRAL BACK TO THE METER ENCLOSURE.

ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.
BONDING AND GROUND CIRCUITS (cont’d)

An AC service configuration that does not include a ground or neutral conductor back to the utility source of electrical supply is not allowed. This neutral conductor shall be sized so that it can safely conduct maximum ground-fault current back to the source of electrical supply. This conductor shall be brought to the service main enclosure. The main bonding jumper shall be located in the service mains enclosure. Equipment grounding conductors and the main bonding jumper shall not be brought into the metering enclosure. If another means of grounding is installed, than the neutral shall be insulated.

An AC service shall have only one main bonding jumper. The main bonding jumper is the single point at which bonding and the grounding electrode system is connected to the source of electrical supplies’ neutral or return conductor. Use of multiple bonding between neutral and the grounding electrode conductor, which ties to earth, will result in a parallel return current flowing through the building and earth. This could result in many unusual problems. Hot locknuts connected to boxes have arced away metal. This arcing can leave a hole in the box. Metal trim has been observed glowing red from this problem.

The grounding electrode system of a structure supplied from another structures service drop can be tied to the neutral or return conductor if at the time of being built a separate equipment grounding conductor was not required to be run with the feeder or branch circuit. (See 2011 NEC 250.32 B (1)) If an equipment ground conductor of an existing appliance was not required in the past to be run with a feeder or branch circuit, then the equipment frame can be grounded by the neutral or return wire. (See 2011 NEC 250.32, 250.140). A meter enclosure on the load side of the service disconnect can be grounded by neutral or the return conductor if all of the following applies: 1) No ground fault protection at the service; 2) All meter enclosures are located next to the main disconnect; 3) the neutral or return conductor is sized properly. Otherwise a load side meter enclosure must have its neutral isolated from ground. (See 2011 NEC 250.142 B)

Equipment grounding conductors, grounding electrode conductors, and bonding jumpers shall be connected by one of the means listed in 2011 NEC 250.8(A). Connection devices or fittings that depend solely on solder shall not be used. (See 2011 NEC 250.8(B).)

Method of Bonding at the Service

Bonding jumpers shall be used around impaired connections such as reducing washers or knockouts in order to achieve required bonding. See 2011 NEC 250.92 for detail on what needs to be bonded and allowed methods of bonding.

Bonding for Over 250 Volts (Non-Service)

Bonding for non-service circuits over 250 Volts to ground has special requirements. Note that the requirements are different depending on whether or not knockouts are involved, and also depends on if the knockouts are listed to provide a reliable bonding connection. See 2011 NEC 250.97 for detail on allowed methods of bonding.

Bonding for Other systems

See 2011 NEC 250.94 for Bonding for other systems.
SEPARATE METERED RATES IN MULTIPLE SERVICE BUILDINGS

Town houses and some multiple occupancy buildings typically have more than one service entrance point. Code allows for up to six sets of service disconnecting means off of one service drop. These must be grouped. These separate services must individually feed separate occupancy spaces, apartments or suites. It is a violation of good wiring practice to extend a separate metered service form one service point into an area served by another service entrance. The exception to this is a dedicated circuit on a different rate schedule. One example of this is an electric water heater circuit run into a building serviced by a single residential or general service. Another example is in a multiple occupancy building’s house meters that the building owner uses to furnish energy for the tenant’s electric space heat. Care shall be taken not to inter-mix wiring on the load side of these services. Wiring from one service main in one part of the building shall not connect circuits to another service main. If a ground from one service is tied to another service an objectionable passage of ground-fault current over a grounding conductor could result. There could be other detrimental effects from this inter-mixing of wiring.

The owner of a multiple occupancy building may want one account with a separate meter for each service entrance. As an unavoidable result, the number of units billed will now be split through more than one meter, increasing the units billed at initial step rates. From a billing standpoint, this is correct because buildings with multiple service entrance points, for all practical purposes, are separate buildings joined by a common fire wall. Town houses are continuous constructed single dwellings.

REPAIRS TO CUSTOMER SERVICE ENTRANCE EQUIPMENT

The DTE Electric Company will only make temporary repairs to customer-owned service entrance equipment. These repairs may include the installation of a multiple arc or a temporary service.

When either of the two methods are used and the trouble is definitely determined to be in the customer’s service entrance equipment, the defective equipment will be yellow tagged and the customer will be advised, in writing, that the multiple or temporary service will be removed in fifteen days. The customer must engage a contractor, at his expense, to make permanent repairs.

All costs of permanent repairs are to be borne by the customer.

REFASTENING EQUIPMENT AFTER INSTALLATION OF SIDING

Siding installation contractors usually find it necessary to loosen the meter enclosure, service cable or conduit, and service attachment when installing siding on existing residences. At the request of the contractor, the Company will loosen the meter enclosure and, if necessary, remove the service drop from the building. The contractor is responsible for unfastening and refastening the service entrance cable or conduit. Electric Field Operation Personnel will loosen and reinstall the meter enclosure.
REFASTENING EQUIPMENT AFTER INSTALLATION OF SIDING - cont’d

If it is necessary to have the service drop removed from the building, Service Planning or Customer Service will arrange to have the contractor locate the attachment point. The contractor must locate the stud.
OBTAINING METER EQUIPMENT AND METER ENCLOSURES

Detroit Edison adopted the electrical industry standard for meter enclosures. Detroit Edison will no longer require use of customized enclosures, and as a result, will no longer provide meter enclosures.

Effective immediately, it is the customer’s responsibility to provide and install a Detroit Edison approved meter enclosure.

To help contractors and customers manage with this change, Detroit Edison makes available to all its customers a list of approved Electrical Meter Enclosures.

To obtain a copy of Detroit Edison’s updated Service Equipment manual go online to http://www.dteenergy.com/pdfs/serviceEquipment.pdf
For any other questions please contact Meter Engineering at 313.389.7711.
INSTALLATION INSTRUCTIONS
METER ENCLOSURES

1. Service entrance wires that will connect to an overhead service drop shall enter the meter enclosure only through the hub provided at the top of the cabinet. A watertight box connector shall be used at the service hub when service entrance cable is used. All outdoor meter enclosures must be weatherproof (NEMA Type 3R).

2. Underground service conductors must enter through the bottom of the meter enclosure. Conduit entering the ground shall be rigid or intermediate metal conduit or electrical rigid Polyvinyl Chloride (PVC) Schedule 80, or equivalent, nonmetallic rigid conduit suitable for the location. (See 2005 NEC 300.50 (B), Underground Installations) (See page 3-4-1 & 3-4-3).

3. Load wires shall enter the enclosure below the load terminals. Entry may be made through the sides, bottom, or back. (See 2005 NEC 338-24, Bending Radius, “The radius of the curve of the inner edge of any bend, during or after installation, shall not be less than five times the diameter of the cable.”)

4. Conductors shall be positioned in the enclosure to provide proper clearance for installation of the meter. Connectors for more than one conductor and connectors used to connect aluminum conductors must be listed and approved for the purpose. Inhibitor of the non-grit type must be used on all aluminum conductors (sparingly). There shall not be more than one conductor under one pressure device (set screw, pad, and so on) unless designed for connecting multiple conductors. All conductor strands shall be contained beneath the connector pressure device. All connectors will be tightened to their proper torque value.

5. Meter enclosures shall be located outdoors unless otherwise authorized by a Detroit Edison Planner.

6. Meter enclosures shall be securely fastened to the wall without distortion using one of the following methods:

 (a) Masonry: Appropriate anchors or toggle bolts with galvanized screws.

 (b) Wood Framing: Galvanized wood screws with a 3/4-inch plywood or pine backing. Nailing into wood is not acceptable. This applies to a building that is primarily wood frame construction. This does not apply to a temporary service installation. Consult Meter Engineering for other means acceptable to Detroit Edison.

7. The customer shall install only meter enclosures approved by Detroit Edison.
8. Meter enclosures shall be surface-mounted on the outside wall of the building. *Enclosures shall not be concealed or recessed into building walls.*

9. To ensure accurate meter registration, meter enclosures must be mounted with the sides and face vertically plumb.

10. Do **not** route the service entrance grounding electrode conductor through or terminate it in the meter enclosure. Note that most UL listed meter enclosures have a grounding terminal that takes a #8 AWG copper conductor in conjunction with a small bottom knock out. This is used for bonding sub-metering enclosures. **Do not use this terminal or knock out.** See UL 414, Section 11.

11. Any bond between the meter enclosure and joint users that interferes with removing the cover on the meter box is a violation of NEC 250.94 (3). The joint user who created the violation must correct the situation.

12. If the supply source is 120/208 WYE, Customer shall furnish and install a grounded fifth terminal mounted in the (9 o’clock position) in each socket.

13. Where approved, insulated neutral terminals will be supplied and installed by the **Customer.**

14. **Single Meter Installations**

 The following vertical clearances shall be maintained:

 (a) Maximum 6’-0” from top of meter enclosure to floor or final grade.

 (b) Minimum 3’-6” from center of meter face to floor or final grade.

15. Minimum 1-ft horizontal clearance required from enclosure to inside corner of building.

16. Minimum 3-ft working space depth required in front of meter enclosure. This area must be clear of obstacles such as trees and permanently installed equipment such as air conditioning condensing units so that maintenance and testing can be performed.

16. Minimum 30-in wide working space required in front of meter (equipment) or width of equipment, whichever is greater. At all times, all hinged equipment doors must be capable of opening more than 90 degrees. (See 2005 NEC 110.26 (2), *Width of working Space.*)

17. Minimum 24-in wide and 6-1/2 ft high access and entrance space to meter required.
18. **Demand** loads higher than the following must have the meter installation design or installation converted to a CT-rated enclosure with a CT cabinet:

(a) **UNDERGROUND and OVERHEAD SINGLE PHASE** demand loads are limited to 256 amperes continuous (320 amperes Note*) for commercial and residential services. Demand loads over 160 through 256 amperes continuous (320 amperes Note*) will use a class 320 meter enclosure with a by-pass handle and jaw release. [Over Current Protection (OCP) is 1.25 times continuous rating or 1.25 times 256A = 320A]

(b) **POLYPHASE** demand loads can not exceed 160 amperes continuous (200 amperes Note*).

Note*: NFPA 70 defines a continuous load as; “A load where the maximum current is expected to continue for 3 hours or more.” Computation of continuous load: “The sum of the noncontinuous loads plus 125 percent of continuous loads.” See 2005 NEC, Article 100, “Continuous Load” and Article 230, “Services”, IV. “Service-Entrance Conductors”, 230.42, (A), (1), for amp rating of main breaker.

| Design or convert to current transformer service if service size is over these limits: |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Service Rating In Amperes | Meter Class | Continuous Demand Rating In Amperes | Phase & Service Type |
| 320 | 320 | 256 | Single/UG & OH |
| 200 | 200 | 160 | Poly/UG & OH |

19. All 240/480 Volt single-phase services using a self contained meter must use a single phase four terminal enclosure with lever bypass and jaw release.

20. The Detroit Edison Planner in the particular area involved must be contacted for prior acceptance of any variances to the above specifications before work begins.

21. A temporary service installation must use angle iron, beeline or unistrut as a supporting structure for all meters and equipment. Wood shall not used as support in place of angle iron, beeline or unistrut for a temporary or permanent service. On a temporary service wood posts can be used for the vertical support of the metal frame that is used to support service equipment. All wood posts must be properly treated for their use and stabilized by concrete. Rigid steel posts must be hot dipped galvanized and stabilized by concrete. See Section 3 for Underground Service Installations or Section 4 for Overhead Service Installations. See 2005 NEC, 590.4, Temporary Installations; General, (A) Services. “Services shall be installed in conformance with Article 230.”

The Detroit Edison Company assumes no responsibility for injury or damage arising from the use of these specifications.

SERVICE EQUIPMENT

MAR 2011

SIM-ESIG

SIM-ESIG: 5-3
Meter Enclosure Specifications

<table>
<thead>
<tr>
<th>METER ENCLOSURE</th>
<th>10, CL200 OH</th>
<th>10, CL200, UG</th>
<th>10, CL200, UG/OH Note 8</th>
<th>10, CL20, UG/OH</th>
<th>10, CL20, CT</th>
<th>30, CL20, CT</th>
<th>30, CL200 UG</th>
<th>30, CL200 OH</th>
<th>10, CL100 Note 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSOLETE TERMINOLOGY</td>
<td>ZS-200 ZS-200Y</td>
<td>ZS-200 ZS-200Y</td>
<td>ZS-200</td>
<td>ZSU-320</td>
<td>ZS3-20-5S</td>
<td>ZS3-20-9S</td>
<td>ZS3-200P</td>
<td>ZS3-200H</td>
<td>ZSW-100</td>
</tr>
<tr>
<td>ELECTRIC METER ENCLOSURES AND ACCESSORIES (List from 5-8-13)</td>
<td>1 Phase, Ringless, 4 Terminals Note 7</td>
<td>1 Phase, Ringless, 4 Terminals Note 7</td>
<td>1 Phase, Ringless, 4 Terminals, With Lever Bypass and Jaw Release</td>
<td>1 Phase, CT Rated, Ringless, with Test Switch</td>
<td>3 Phase, CT Rated, Ringless, with Test Switch</td>
<td>3 Phase, Self Contained, 7 terminals, With Bypass Lever Note 7</td>
<td>1 Phase, 4 Terminals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIRE SIZE</td>
<td>#10 THRU 250 KCMIL</td>
<td>#2 THRU 250 KCMIL</td>
<td>#2 THRU 250 KCMIL</td>
<td>10-pole test switch</td>
<td>10-pole test switch</td>
<td>#2 THRU 250 KCMIL</td>
<td>#2 THRU 250 KCMIL</td>
<td>#10 THRU 1/0</td>
<td></td>
</tr>
<tr>
<td>HUB SIZE</td>
<td>2"</td>
<td>NONE</td>
<td>2"</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>NONE</td>
<td>2-1/2"</td>
<td>NONE</td>
</tr>
<tr>
<td>KO SIZE</td>
<td>¾” THRU 2-1/2”</td>
<td>¾” THRU 2-1/2”</td>
<td>¾” THRU 2-1/2”</td>
<td>2” THRU 3”</td>
<td>Note 4</td>
<td>Note 4</td>
<td>Note 4</td>
<td>Note 4</td>
<td>¾” THRU 1-1/2”</td>
</tr>
<tr>
<td>COMMON SIZE Note 5</td>
<td>9” x 16” x 5”</td>
<td>11” x 16” x 5”</td>
<td>8” x 13” x 19”</td>
<td>13” x 22” x 5”</td>
<td>14” x 16” x 3-1/2”</td>
<td>14” x 16” x 3-1/2”</td>
<td>13” x 19” x 5”</td>
<td>10” x 19” x 5”</td>
<td>8” x 11” x 4”</td>
</tr>
<tr>
<td>RATED AMPERES(A)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>320</td>
<td>20</td>
<td>20</td>
<td>200</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>MAX SERVICE AMPERES(A)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200 TO 320</td>
<td>>320</td>
<td>>200</td>
<td>200</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>VOLTAGE(V)</td>
<td>120/240</td>
<td>120/208Y Note 1</td>
<td>120/240</td>
<td>120/208Y Note 1</td>
<td>240/480</td>
<td>120/240</td>
<td>120/240</td>
<td>240/480</td>
<td>Note 3 Note 3 Note 3 240 P-P Note 2</td>
</tr>
<tr>
<td>BY PASS</td>
<td>NONE</td>
<td>NONE</td>
<td>LEVER BY PASS AND JAW RELEASE</td>
<td>LEVER BY PASS AND JAW RELEASE</td>
<td>NONE</td>
<td>LEVER BY PASS AND JAW RELEASE</td>
<td>LEVER BY PASS AND JAW RELEASE</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>SERVICE INSTALL REFERENCES</td>
<td>SECTION 4</td>
<td>SECTION 3</td>
<td>SECTION 3 & 4</td>
<td>SECTION 3</td>
<td>SECTION 3 & 4</td>
<td>SECTION 3</td>
<td>SECTION 4</td>
<td>SECTION 7</td>
<td></td>
</tr>
<tr>
<td>DRAWINGS</td>
<td>5-3-5</td>
<td>5-3-5</td>
<td>5-3-5</td>
<td>5-3-6 THRU 5-3-7.2</td>
<td>5-3-19.1</td>
<td>5-3-19.1</td>
<td>5-3-18 5-3-19</td>
<td>5-3-18 5-3-19</td>
<td>VARIOUS</td>
</tr>
</tbody>
</table>

Note 1: If the supply source is 120/208 WYE, **Customer** shall furnish and install a grounded fifth terminal mounted in the 9 o’clock position in each socket.

Note 2: P-P is phase to phase voltage, all others phase to ground and phase to phase.

Note 3: 3phW Wye, 120/208V or 277/480V also 3phW Delta, Grounded 120V, 240V or 480V also 3phW Delta, 240V

Note 4: All KO’s located below the line of the lowest live part. See UL 414, 4.2.3

Note 5: Width x Length x Depth, Enclosure can have larger dimensions.

Note 6: Terminals are 3/8” studs with captive “Belleville” washer nuts. Must have one 10-32 tapped hole in each line bus.

Note 7: OH/UG type enclosure can substitute for the UG or OH enclosure. OH/UG will be larger than an OH type.

Note 8: Also used for 3O, 3W Delta, 120-480V.

Note 9: To be used only for Air Conditioning/Heating/Cooling/Plug-in vehicles rates or for maintenance of existing 100A service

DTE Electric Company assumes no responsibility for injury or damage arising from the use of these specifications.
SINGLE PHASE METER ENCLOSURES

OVERHEAD

10, CL200, 3W, 120/240V

Network, CL200, 3W, 120/208V

LEGEND: POTENTIAL JAW FOR 120/208 VOLT SERVICE

UNDERGROUND

10, CL200, 3W, 120/240V

Network, CL200, 3W, 120/208V

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
NOTES:
1. NO ENTRY IS TO BE MADE THROUGH THE TOP OF THIS ENCLOSURE.

2. THE BYPASS HANDLE MUST BE RAISED TO THE UP OR OPEN POSITION BEFORE INSTALLING OR REMOVING METER.
 CAUTION: IN THE UP POSITION THE LINE AND LOAD SOCKET JAWS ARE BRIDGED AND THEREFORE THE LOAD SIDE OF THE METER IS ENERGIZED.

3. NEVER USE THE BYPASS AS A JUMPERING DEVICE IN LIEU OF A METER. NEVER INSTALL OR REMOVE THE METER WITHOUT DISCONNECTING ALL OF THE CUSTOMER'S LOAD.

4. THE CLEAR PLASTIC SHIELD IS TO GUIDE THE METER BLADES SAFELY INTO THE JAWS OF THE ENCLOSURE AND MUST NEVER BE REMOVED.

5. CAUTION MUST BE OBSERVED TO MAKE SURE THAT THE LOAD CONNECTORS CANNOT ROTATE AND DON'T ACCIDENTALLY CONTACT THE NEUTRAL STUD.

6. SEE SIM-ESIG SECTION 3 FOR UNDERGROUND SERVICE INSTALLATION INSTRUCTIONS.

7. LOAD LUGS FURNISHED AND INSTALLED BY THE CONTRACTOR. IF MORE THAN ONE CONDUCTOR IS TO BE INSTALLED PER PHASE, A LUG U.L. LISTED AS SUITABLE FOR MULTIPLE CONDUCTORS OR TWO SINGLE CONDUCTOR LUGS INSTALLED BACK TO BACK MUST BE USED.

8. THE USE OF THIS ENCLOSURE IS EXPRESSLY PROHIBITED FOR ANY APPLICATION WHERE THE CONNECTED LOAD IS LESS THAN 200 AMPS, OR THE DEMAND LOAD IS GREATER THAN 320 AMPS. FURTHER, DO NOT USE ON ANY COMMERCIAL SERVICE THAT MAY HAVE FUTURE NEED TO INCREASE LOAD OR CHANGE TO THREE PHASE.

9. WHENEVER THIS ENCLOSURE IS USED, THE DTE ELECTRIC SERVICE PLANNER MUST ARRANGE TO HAVE A 320 AMP BASE METER INSTALLED IN IT.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
NOTES:

1. THE BYPASS HANDLE MUST BE RAISED TO THE UP OR OPEN POSITION BEFORE INSTALLING OR REMOVING METER.

 CAUTION: IN THE UP POSITION THE LINE AND LOAD SOCKET JAWS ARE BRIDGED AND THEREFORE THE LOAD SIDE OF THE METER IS ENERGIZED.

2. NEVER USE THE BYPASS AS A JUMPERING DEVICE IN LIEU OF A METER. NEVER INSTALL OR REMOVE THE METER WITHOUT DISCONNECTING THE LOAD.

3. THE CLEAR PLASTIC SHIELD IS TO GUIDE THE METER BLADES SAFELY INTO THE JAWS OF THE ENCLOSURE AND MUST NEVER BE REMOVED.

4. NO ENTRY IS TO BE MADE THROUGH THE TOP OF THIS ENCLOSURE.

5. CAUTION MUST BE OBSERVED TO MAKE SURE THAT THE LOAD CONNECTORS CANNOT ROTATE AND DON’T ACCIDENTALLY CONTACT THE NEUTRAL STUD.

6. SEE SIM-ESIG SECTION 4 FOR OVERHEAD SERVICE INSTALLATION INSTRUCTIONS.

7. THE USE OF THIS ENCLOSURE IS EXPRESSLY PROHIBITED FOR ANY APPLICATION WHERE THE CONNECTED LOAD IS LESS THAN 200 AMPS, OR THE DEMAND LOAD IS GREATER THAN 320 AMPS. FURTHER, DO NOT USE ON ANY COMMERCIAL SERVICE THAT MAY HAVE FUTURE NEED TO INCREASE LOAD OR CHANGE TO THREE PHASE.

8. WHENEVER THIS ENCLOSURE IS USED, THE SERVICE PLANNER MUST ARRANGE TO HAVE A 320 AMP BASE METER INSTALLED IN IT.

9. THE USE OF THIS HEAVY DUTY ENCLOSURE ON AN OVERHEAD SERVICE WILL BE BY SPECIAL PERMISSION OF THE DTE ELECTRIC SERVICE PLANNER.

10. IN THIS OVERHEAD APPLICATION, THE SERVICE RISER WILL ENTER THROUGH A FACTORY ELL OR CONDUIT BEND INTO THE LEFT OR RIGHT SIDE AS SHOWN. IF THERE IS AN UNAVOIDABLE SPACE PROBLEM, A 90° CONDUIT FITTING MAY BE USED.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

OPTIONAL KIT: TANG WITH 10-32 TAPPED HOLE FOR WATER HEATER LUG. USE #8 AWG WITH 10-32 X 3/8" SCREW WASHER & LOCK WASHER FOR BOTH PHASES. FURNISHED AND INSTALLED BY CONTRACTOR.

OPTIONAL KIT: TANG WITH 10-32 TAPPED HOLE FOR WATER HEATER LUG. USE #8 AWG WITH 10-32 X 3/8" SCREW WASHER & LOCK WASHER FOR NEUTRAL. FURNISHED AND INSTALLED BY CONTRACTOR.

NOTES:
1. ENTRY FOR UNDERGROUND SERVICE MUST BE KEPT BELOW METER SOCKET ON BOTTOM.
2. THE BYPASS HANDLE MUST BE RAISED TO THE UP OR OPEN POSITION BEFORE INSTALLING OR REMOVING THE METER. CAUTION: LINE AND LOAD SOCKET JAWS ARE BRIDGED WITH HANDLE UP. IN THIS POSITION THE LOAD SIDE OF THE METER IS ENERGIZED.
3. NEVER USE THE BYPASS AS A JUMPING DEVICE IN LIEU OF A METER. NEVER INSTALL OR REMOVE THE METER WITHOUT DISCONNECTING ALL OF THE CUSTOMER’S LOAD.
4. THE CLEAR PLASTIC SHIELD MUST EXTEND DOWN TO THE METER SOCKET BASE AND MUST NEVER BE REMOVED.
5. CAUTION MUST BE OBSERVED TO MAKE SURE THAT THE LOAD CONNECTORS CANNOT ROTATE AND ACCIDENTALLY CONTACT THE NEUTRAL STUD. SEE TANG CONVERSION DETAIL FOR INSTALLING LINE AND LOAD CONNECTORS AND OPTIONAL TANG.
6. SEE SIM-ESIG SECTION 3 FOR UNDERGROUND SERVICE INSTALLATION DETAILS.
7. OPTIONAL LINE & LOAD LUGS FURNISHED AND INSTALLED BY THE CONTRACTOR. LUGS UL LISTED AS SUITABLE FOR MULTIPLE CONDUCTORS MUST BE USED. USE TWO DOUBLE CONNECTION LUGS BACK TO BACK FOR FOUR #6 TO 350Kcmil & NEUTRALS ALONG WITH THE OPTIONAL TANG CONVERSION KIT. THE TANG HAS A TAPPED 10-32 HOLE. USE FOR #8 OR #10 AWG CONDUCTORS. SEE 2005 NEC 230.31 SIZE AND RATING, (B) MINIMUM SIZE. USE 10-32 X 3/8" SCREW, WASHER AND LOCK WASHER.
8. THE USE OF THIS ENCLOSURE IS EXPRESSLY PROHIBITED FOR ANY APPLICATION WHERE THE CONNECTED LOAD IS LESS THAN 200 AMPS. OR THE DEMAND LOAD IS GREATER THAN 320 AMPS... DO NOT USE ON COMMERCIAL SERVICE THAT MAY HAVE FUTURE NEED TO INCREASE LOAD OR CHANGE TO THREE PHASE.
9. THE DTE ELECTRIC PLANNER MUST ARRANGE TO HAVE A CLASS 320 METER INSTALLED IN THIS ENCLOSURE.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
1Ø, CL320, 3W, 120/240V METER ENCLOSURE
OVERHEAD APPLICATION

ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

OPTIONAL KIT: TANG WITH 10-32 TAPPED HOLE FOR WATER HEATER LUG, USE #8 AWG WITH 10-32 X 3/8" SCREW WASHER & LOCK WASHER FOR NEUTRAL. FURNISHED AND INSTALLED BY CONTRACTOR.

OPTIONAL KIT: TANG WITH 10-32 TAPPED HOLE FOR WATER HEATER LUG, USE #8 AWG WITH 10-32 X 3/8" SCREW WASHER & LOCK WASHER FOR BOTH PHASES. FURNISHED AND INSTALLED BY CONTRACTOR.

NOTES:

1. THE BYPASS HANDLE MUST BE RAISED TO THE UP OR OPEN POSITION BEFORE INSTALLING OR REMOVING THE METER.
 CAUTION: LINE AND LOAD SOCKET JAWS ARE BRIDGED WITH HANDLE UP. IN THIS POSITION THE LOAD SIDE OF THE METER IS ENERGIZED.

2. NEVER USE THE BYPASS AS A JUMPERING DEVICE IN LIEU OF A METER. NEVER INSTALL OR REMOVE THE METER WITHOUT DISCONNECTING ALL OF THE CUSTOMER'S LOAD.

3. THE CLEAR PLASTIC SHIELD MUST EXTEND DOWN TO THE METER SOCKET BASE AND MUST NEVER BE REMOVED.

4. CAUTION MUST BE OBSERVED TO MAKE SURE THAT THE LOAD CONNECTORS CANNOT ROTATE AND ACCIDENTALLY CONTACT THE NEUTRAL STUD.
 SEE TANG CONVERSION DETAIL FOR INSTALLING LINE AND LOAD CONNECTORS AND OPTIONAL TANG.

5. OPTIONAL LINE & LOAD LUGS FURNISHED AND INSTALLED BY THE CONTRACTOR. LUGS UL LISTED AS SUITABLE FOR MULTIPLE CONDUCTORS. MUST BE USED. USE TWO DOUBBLE CONNECTION LUGS BACK TO BACK FOR FOUR #6 TO 350Kcmil & NEUTRALS ALONG WITH THE OPTIONAL TANG CONVERSION KIT. THE TANG HAS A TAPPED 10-32 HOLE. USE FOR #6 OR #10 AWG CONDUCTORS. SEE 2005 NEC 230.31 SIZE AND RATING. (B) MINIMUM SIZE. USE 10-32 X 3/8" SCREW, WASHER AND LOCK WASHER.

6. THE USE OF THIS ENCLOSURE IS EXPRESSLY PROHIBITED FOR ANY APPLICATION WHERE THE CONNECTED LOAD IS LESS THAN 200 AMPS, OR THE DEMAND LOAD IS GREATER THAN 320 AMPS. DO NOT USE ON COMMERCIAL SERVICE THAT MAY HAVE FUTURE NEED TO INCREASE LOAD OR CHANGE TO THREE PHASE.

7. THE DTE ELECTRIC PLANNER MUST ARRANGE TO HAVE A CLASS 320 METER INSTALLED IN THIS ENCLOSURE.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.

DESIGN PRACTICES

NOTES:

1. Ø, CL100, 3W, 120/240V

2. ®, CL320, 3W, 120/240V

3. 3/8-24 HEX NUT

4. 2 CONDUCTOR ONE HOLE MOUNT 350Kcmil CONNECTORS

5. 3/8-24 NUT & WASH

6. RIGID STEEL (RMC) CONDUIT NIPPLE. LOCKNUTS INSIDE AND OUTSIDE MADE UP WITH ENCHTIGHT CONDUIT 1" FROM BOTTOM EDGE. STAY WELL BELOW METER SOCKET. SEAL BOX OPENINGS.

7. NON-METALLIC BUSHING REQUIRED TO COVER CONDUIT THREADS.

8. SIDE VIEW OF NEUTRAL STUD

9. MAXIMUM SIZE CONDUIT 3"

10. USE HUB ON TOP ENTRY

11. 1Ø, CL100, 3W, 120/240V

12. MAXIMUM SIZE CONDUIT 3"

13. USE HUB ON TOP ENTRY

14. 1Ø, CL100, 3W, 120/240V
MULTIPLE METER INSTALLATION
SINGLE PHASE, 3W, 120/240V, 2 POSITIONS, HORIZONTAL UNDERGROUND

NOTES:
1. ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

2. THE ENCLOSURE HAS LINE SIDE TAP CONNECTIONS FOR ADDING AN ENCLOSURE FOR A WATER HEATER ACCOUNT OR FOR ISC FOR EITHER OR BOTH CUSTOMERS.

3. USE 3” CONDUIT FOR 350 KCMIL ON LINE SIDE AND MAXIMUM 250 KCMIL ON LOAD SIDE. PLANNER - CONSULT DESIGN PRACTICES FOR INSTALLATION CAPABILITY.

4. VOLTAGE 120/240, BUT MAY BE CONVERTED TO 120/208 BY THE ADDITION OF A NEUTRAL POTENTIAL FIFTH JAW. CUSTOMER WILL PROVIDE FIFTH JAW.

5. THERE ARE FIVE CONCENTRIC KNOCKOUTS: BOTTOM CENTER, EACH SIDE BELOW EACH METER POSITION AND ONE ON EACH SIDE PANEL. NO ENTRY IS TO BE MADE THROUGH THE TOP.

6. SEE SECTION 3 FOR INSTALLATION DIAGRAM AND OTHER PAGES IN THIS SECTION FOR INSTALLATION INSTRUCTIONS.

7. ALL WIRING SHOULD BE INSTALLED BY AN ELECTRICAL CONTRACTOR.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
MULTIPLE METER INSTALLATION
SINGLE PHASE, 3W, 120/240V, 2 POSITIONS, HORIZONTAL
OVERHEAD

NOTES:
1. ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

2. THE ENCLOSURE HAS LINE SIDE TAP CONNECTIONS FOR ADDING AN ENCLOSURE FOR A WATER HEATER ACCOUNT OR FOR ISC FOR EITHER OR BOTH CUSTOMERS.

3. USE 3" CONDUIT FOR 350 KCML ON LINE SIDE AND MAXIMUM 250 KCML ON LOAD SIDE.

4. PLANNER - CONSULT DESIGN PRACTICES FOR INSTALLATION CAPABILITY.

5. VOLTAGE 120/240, BUT MAY BE CONVERTED TO 120/208 BY THE ADDITION OF A NEUTRAL POTENTIAL FIFTH JAW. CUSTOMER WILL PROVIDE FIFTH JAW.

6. THERE ARE FIVE CONCENTRIC KNOCKOUTS: BOTTOM CENTER, EACH SIDE BELOW EACH METER POSITION AND ONE ON EACH SIDE PANEL.

7. ALL WIRING SHOULD BE INSTALLED BY AN ELECTRICAL CONTRACTOR.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.

SEE NOTE 1

SEE NOTE 4.
SERVICE ENTRANCE AND METERING EQUIPMENT
FOR MULTIPLE OCCUPANCY BUILDINGS

I. SINGLE-PHASE SERVICE TO TENANTS

There are two methods of installing DTE Electric metering equipment in multiple occupancy buildings for single-phase service to tenants:

Method One: Electrical contractor will furnish DTE approved standard single meter enclosures, which the electrical contractor will install using trough, conduit or other suitable means. They may also be mounted on panels along with the over-current devices. Sealing arrangements and separation of metered and unmetered conductors must be approved by DTE Electric.

NOTE: Service into the bottom of the meter enclosure from the trough and load out the top of the meter enclosure is NOT ALLOWED.

Method Two: DTE Electric will list the manufacturer and catalog numbers of multiple meter equipment, which has been accepted for metering tenant accounts in multiple occupancy buildings. This equipment will be purchased, installed, owned, and maintained by the building owner. Purchase will be from independent distributors of the approved equipment on the list. Consult manufacturers for the names of distributors in this area.

Meter equipment manufacturers and catalog numbers are listed in section 5-8. These are the only units of such equipment that are acceptable for the use of metering new DTE Electric tenant accounts in multiple occupancy buildings.

II. THREE PHASE SERVICE TO TENANTS

For services not exceeding 240V see the two methods above for installing DTE Electric metering equipment in multiple occupancy buildings for three-phase service to tenants.

For three-phase 277/480V, 200A, commercial multi-metering applications use: Method One above or a Commercial metering switchboard manufactured by a company listed on page 5-6-12 and using meter sockets preapproved by DTE Electric for single position 480V meter enclosures as listed in section 5-8 “Three Phase, Ringless, Self Contained, 7 Terminals, 480V, With Lever Bypass And Jaw Release”. Indoor installations require a Main Switch or Circuit Breaker. No unused metering positions are allowed. See 5-3-12 for reference. See 5-3-26 and 5-3-27 for inspection routine.

NOTE: The standard metering for new DTE Electric three-phase accounts is the S-base (socket) polyphase solid-state meter. These include a lever bypass and jaw release for 277/480V self-contained meter sockets.
III. RESIDENTIAL HIGH-RISE AND APARTMENT BUILDINGS

DTE Electric shall be consulted for requirements for high-rise buildings having three or more floors. This consultation is to include but is not limited to, the number of metering rooms, the location of the metering room(s), and accessibility. The customer shall furnish modular grouped meter installations with individual breakers for residential high-rise and apartment buildings. DTE Electric will list the manufacturer and catalog numbers of multiple meter equipment, which has been accepted by DTE Electric for metering tenant accounts in multiple occupancy buildings. This equipment will be purchased, installed, owned, and maintained by the building owner. Purchase will be from independent distributors of the approved equipment on the list. Consult manufactures for the names of distributors in this area. Multiple meter equipment manufacturers and catalog numbers are listed in section 5-8. This is the only equipment that will be acceptable to meter new DTE Electric tenant accounts in multiple occupancy buildings. Sealing arrangements and separation of metered and unmetered conductors must be approved by DTE Electric Meter Engineering. If primary fed, residential metering that requires “dry-type” transformers to be installed on the line side of the metering equipment shall be provided and owned by DTE Electric. Specifications for the installation of these transformers will be provided by DTE Electric. The DTE Electric owned transformers will reside in the same meter room as the metering equipment.

IV. COMBINATION COMMERCIAL (RETAIL) & RESIDENTIAL HIGH RISE SERVICES

DTE Electric shall be consulted for requirements for the design of combined electrical services requiring both commercial and residential metering equipment having three or more floors. For primary fed customers, residential metering that requires “dry-type” transformers to be installed on the line side of the metering equipment shall be provided and owned by DTE Electric. Specifications for the installation of these transformers will be provided by DTE Electric. The DTE Electric owned transformers will reside in the same meter room as the metering equipment. The customer shall consult with DTE Electric to determine the number of metering rooms required, the location of the metering room(s), sealing of all line conductors including transformer(s), and accessibility. Sealing arrangements and separation of metering and unmetered conductors must be approved by DTE Electric Meter Engineering.

The customer shall be responsible for consulting with DTE Electric for specific design criteria to address voltage drop standards.

DTE Electric will list the manufacturer and catalog numbers of multiple meter equipment, which has been accepted by DTE Electric for metering tenant accounts in multiple occupancy buildings. This equipment will be purchased, installed, owned, and maintained by the building owner. Purchase will be from independent distributors of the approved equipment on the list. Consult manufacturers for the names of distributors in this area. Multiple meter equipment manufactures and catalog numbers are listed in section 5-8. This is the only equipment that will be acceptable to meter new DTE Electric tenant accounts in multiple occupancy buildings.

NOTE: The standard metering for new DTE Electric, three-phase accounts is the S-Base (socket) polyphase solid state meter. These include a lever bypass and jaw release for all self contained meter sockets.
VMS* MULTIPLE METER PANELS
SINGLE PHASE 120/240 OR 120/208 VOLT
THREE HIGH, FOUR HIGH, FIVE HIGH, OR SIX HIGH

SPECIFICATION NOTES

1. Service Cables or main feeder cables must be connected into the VMS* Main Service Unit**. Vertical Stacks will be directly connected into the VMS Main Service Unit from one VMS to the adjoining VMS with the connection hardware furnished with the units.

2. Housing to housing screws must be firmly fastened to securely close the mating surfaces.

3. See the table on page 5-8-1 through 5-8-12 for catalog numbers.

4. Meter assembly panel and VMS Main Service Unit furnished and installed by contractor.

5. Refer to Section 7 for Water Heater installation diagrams.

6. Outdoor models are available, see table referred to in note 3 above.

7. Tenant main feeder must generally exit through the top or bottom of the VMS in which it terminates. VMS housings are never to be used as a raceway for conductors terminated in another VMS. (Exception: Water heater relay control circuit may pass from one VMS to the next).

8. Detroit Edison approved 120/208 volt wye meters and metering equipment to be supplied by customer or contractor.

9. All multiple metering housing cover mounting screws must be furnished and installed by contractor, top, bottom and below each meter opening.

10. The Detroit Edison Company assumes no responsibility for injury or damage arising from the use of these specifications.

11. Contractor must furnish VERTICAL METER STACKS and SCREW-TYPE sealing rings.

12. Mounting height must conform to DECo. requirements. (see page 5-3-11)

13. Service feeds to VMS units are required to be installed in conduit back to Detroit Edison service equipment. Consult with Detroit Edison Planner for exceptions.

* VMS – Vertical Meter Stack
** Main Service Unit – Main Circuit Breaker, Fusible Switch or Terminal Box
MULTIPLE METER PANELS
10, 120/240V OR 120/208V
3 TO 6 HIGH

ALL METERS MUST FOLLOW NUMERICAL ADDRESS ORDER FROM TOP TO BOTTOM AND LEFT TO RIGHT

SEE SPECIFICATION NOTE 9, IN 5-3-10

MIN. METER HEIGHT OUTDOORS 24" INDOORS 18"

MIN. METER HEIGHT 76"

MIN. DISTANCE TO ADJACENT SIDE WALL IS 12"

MAXIMUM METER HEIGHT 76"

MINIMUM DISTANCE TO ADJACENT SIDE WALL IS 12"

MIN. DISTANCE TO ADJACENT SIDE WALL IS 12"

MIN. DISTANCE TO ADJACENT SIDE WALL IS 12"

MIN. DISTANCE TO ADJACENT SIDE WALL IS 12"

12" MINIMUM

12" MINIMUM

12" MINIMUM

12" MINIMUM

SEE TABLE BELOW

MINIMUM WORKING SPACE PER NFPA 70, 2006 NEC TABLE 110.26(A)(1)

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>0-150V</th>
<th>151-600V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INSULATED WALL IN FRONT OF EQUIPMENT</td>
<td>3'</td>
<td>3'</td>
</tr>
<tr>
<td>2 WALL IN FRONT OF EQUIPMENT GROUNDED TO EARTH</td>
<td>3'</td>
<td>3 1/2'</td>
</tr>
<tr>
<td>3 EQUIPMENT ACROSS FROM EQUIPMENT WITH EXPOSED LIVE PARTS</td>
<td>3'</td>
<td>4'</td>
</tr>
</tbody>
</table>

THESE DIMENSIONS ARE FOR INSIDE OR OUTSIDE INSTALLATIONS

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM
COMMERCIAL METERING SWITCHBOARD
INSTALLATION 277/480V 3 PHASE

NOTES:
1. BARRIERS ARE REQUIRED TO SEPARATE THE METERING AREA FROM ANY OTHER AREAS IN THE SWITCHBOARD ASSEMBLY WHICH CONTAIN EQUIPMENT OR CONDUCTORS CARRYING METERED CURRENT.
2. ALL METERS MUST BE TAGGED WITH ADDRESS/UNIT LABELS AND SWITCHBOARD COMPONENT SHALL HAVE BUILDING NUMBER.
3. CUSTOMERS SHALL PROVIDE MANUFACTURER'S NAME, MODEL # AND DATA/OUT SHEET OF EQUIPMENT FOR DTE APPROVAL BEFORE PURCHASING EQUIPMENT.
4. ALL OUTDOOR EQUIPMENT WILL HAVE APPROPRIATE WEATHER TIGHT CONSTRUCTION AND APPROVED DTE DOOR SEAL HASPS. OUTDOOR EQUIPMENT ENCLOSURE DOORS WILL BE TAGGED TO IDENTIFY INTERNAL EQUIPMENT.
5. ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

MIN. WORKING CLEARANCES
NICE 2017 TABLE 110.26(A)(11):

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>0-150V</th>
<th>151-600V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INSULATED WALL IN FRONT OF EQUIPMENT</td>
<td>3'</td>
<td>3'</td>
</tr>
<tr>
<td>2. WALL IN FRONT OF EQUIPMENT GROUNDED TO EARTH</td>
<td>3'</td>
<td>3-1/2'</td>
</tr>
<tr>
<td>3. EQUIPMENT ACROSS FROM EQUIPMENT WITH EXPOSED LIVE PARTS</td>
<td>3'</td>
<td>4'</td>
</tr>
</tbody>
</table>

DIMENSIONS ARE FOR INSIDE OR OUTSIDE INSTALLATIONS

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.

DESIGN PRACTICES

SIM-ESIG

DTE ELECTRIC COMPANY
MULTIPLE METER INSTALLATION
“S” TYPE METER ENCLOSURES INDOOR INSTALLATION
NO PROVISIONS FOR FUTURE LOAD METERING EQUIPMENT

LEGEND:

1. WIREWAY FURNISHED AND INSTALLED BY CONTRACTOR.
2. SWITCH OR CIRCUIT BREAKER FURNISHED & INSTALLED BY CONTRACTOR.
3. METER ENCLOSURE FURNISHED & INSTALLED BY CONTRACTOR.
4. APT. MAIN DISCONNECT FURNISHED & INSTALLED BY CONTRACTOR.

NOTES:

A. THIS INSTALLATION WILL NOT ACCOMMODATE FUTURE ADDITIONS TO SERVICE EQUIPMENT AND SHOULD BE USED ONLY WHEN SPACE LIMITATIONS PROHIBIT A SINGLE ROW BANK.
B. COVERS OF ALL ENCLOSURES CONTAINING CONDUCTORS CARRYING UNMETERED CURRENT SHALL BE EQUIPMENT WITH APPROVED SEALING DEVICES.
C. METER ENCLOSURES, DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES LOCATED OUTSIDE THE AREA WHERE THE SERVICE ENTERS THE BUILDING SHALL HAVE AN INSULATED NEUTRAL AS WELL AS NEUTRAL CONNECTIONS IN ACCORDANCE WITH CODE REQUIREMENTS.
D. METER ENCLOSURES MUST BE MOUNTED WITH SIDE AND FRONT FACES VERTICALLY PLUMB.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

RESERVE ADEQUATE SPACE ABOVE WIREWAY FOR FUTURE LOAD METERING EQUIPMENT

6' MAX
3' 6" MIN
5' 6" MAX

1. SWITCH OR CIRCUIT BREAKER FURNISHED AND INSTALLED BY CONTRACTOR.
2. WIREWAY FURNISHED AND INSTALLED BY CONTRACTOR.
3. APPROVED METER ENCLOSURE FURNISHED AND INSTALLED BY CONTRACTOR.
4. Apt. MAIN DISCONNECT FURNISHED AND INSTALLED BY CONTRACTOR.

NOTES:
A. THIS INSTALLATION WILL ACCOMMODATE FUTURE ADDITIONS TO SERVICE EQUIPMENT.
B. COVERS OF ALL ENCLOSURES CONTAINING CONDUCTORS CARRYING UNMETERED CURRENT SHALL BE EQUIPPED WITH APPROVED SEALING DEVICES.
C. METER ENCLOSURES AND DISCONNECTING AND OVERCURRENT PROTECTION DEVICES LOCATED OUTSIDE THE AREA WHERE THE SERVICE ENTERS THE BUILDING SHALL HAVE INSULATED NEUTRAL AND NEUTRAL CONNECTIONS IN ACCORDANCE WITH CODE REQUIREMENTS.
D. METER ENCLOSURES MUST BE MOUNTED WITH SIDE AND FRONT FACES VERTICALLY PLUMB.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
MULTIPLE METER INSTALLATION
"S" TYPE SINGLE PHASE METER ENCLOSURES
OUTDOOR TROUGH INSTALLATION

NOTES:
1- CHECK WITH LOCAL INSPECTION AUTHORITY WHEN MORE THAN SIX SETS OF SERVICE DISCONNECTING AND OVERCURRENT PROTECTION DEVICES ARE REQUIRED.
2- COVERS OF ALL ENCLOSURES SUCH AS WIREWAYS, PULLBOXES AND SWITCH OR CIRCUIT BREAKER CABINETS CONTAINING CONDUCTORS CARRYING UNMETERED CURRENT SHALL BE EQUIPPED WITH APPROVED SEALING DEVICES.
3- SEE INSTALLATION INSTRUCTIONS THIS SECTION.

NOTE: METER ENCLOSURE, FURNISHED & INSTALLED BY CONTRACTOR. RAINTIGHT WIREWAY FURNISHED BY CONTRACTOR. FOR SIZE OF WIRE WAY REQUIRED AND PERMISSIBLE FILL SEE THE NFPA 70. CUT CLEAN, ACCURATE HOLE AS REQUIRED TO INSURE A RAINTIGHT JOINT BETWEEN CONDUIT AND DUCT.

CONTRACTOR TO LEAVE 24" OF WIRE BEYOND SERVICE HEAD FOR MAKING TAKS.

ANY BOND SETS THAT INTERFERE WITH THE METER ENCLOSURE END OR JOINT USES THAT INTERFERES WITH REMOVING THE COVER ON THE BOX AND MUST BE TOLERATED AND CORRECTED.

MEASURED AND UNMEASURED CONDUCTORS SHALL NOT OCCUPY THE SAME RACEWAY.

ANY BOND SETS THAT INTERFERE WITH THE METER ENCLOSURE END OR JOINT USES THAT INTERFERES WITH REMOVING THE COVER ON THE BOX AND MUST BE TOLERATED AND CORRECTED.

METER ENCLOSURE FURNISHED A RAIN-FAINTED ENCLOSURE.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
SELF-CONTAINED METER ENCLOSURES

3Ø, CL200, 4W, WYE or DELTA (7 TERMINALS)

1. UG LINE CONDUCTORS MUST ENTER THE BOTTOM LEFT SIDE AND TRAIN UP THE LEFT SIDE ONLY.

2. 120/240V DELTA SERVICES WILL HAVE THE POWER LEG TERMINATED IN THE RIGHT SIDE METER BLOCK LUG (AS ILLUSTRATED).

3. ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER THAT CREATED THE VIOLATION MUST CORRECT THE SITUATION.

3Ø, CL200, 3W, DELTA (5 TERMINALS)

1. UG LINE CONDUCTORS MUST ENTER THE BOTTOM LEFT SIDE AND TRAIN UP THE LEFT SIDE ONLY.
30, CL200, 4W, WYE or DELTA METER ENCLOSURES (7 TERMINALS)

NOTES:

A. Load wires may enter the enclosure through the side, back or bottom. However, back entry is allowed only if the center of the hole or the conduit is located between 2" and 3" from the bottom and centered between the sides of the enclosure. Conductor training in the right side of the enclosure is prohibited.

B. The power leg of a 120/240V 30 Delta service must be terminated in the right side meter lug.

C. Underground service shall enter the enclosure at the bottom left hand side only.

D. See installation instructions in this section.

E. Any bond between the meter enclosure and joint users that interferes with removing the cover on the meter box is a violation of NEC 250.94 (3). The joint user who created the violation must correct the situation.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
1. THE 1 1/4" METAL CONDUIT MAY ONLY ENTER THE METER SOCKET IN THE DESIGNATED AREA LOCATED JUST BELOW THE TEST SWITCH (THRU BOTTOM, BACK, OR SIDE).

2. IN SWITCHBOARDS, CURRENT TRANSFORMER CABINETS, AND CONNECTION CABINETS FOR 120/240V DELTA SERVICES THE POWER LEG SHALL BE TERMINATED IN THE CENTER POSITION.

3. METER SOCKETS MUST BE GROUPED WITH CT CABINETS.

4. ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.
20A CT-RATED METER SOCKET
(WITH LEVER BYPASS AND JAW RELEASE)

OBSOLETE
METER ENCLOSURES FURNISHED BY CONTRACTOR

SERVICE TERMINAL BOX BY CONTRACTOR

SERVICE DROP BY DECO.

THE DETROIT EDISON CO. ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING OUT OF THE USE OF THIS SPECIFICATION DIAGRAM.
MULTIPLE METER ENCLOSURES

3 PHASE
INDOOR INSTALLATION

SEE INSTALLATION INSTRUCTIONS THIS SECTION

LEGEND:
1. SWITCH OR CIRCUIT BREAKER FURNISHED AND INSTALLED BY CONTRACTOR.
2. WIREWAY FURNISHED AND INSTALLED BY CONTRACTOR.
3. METER ENCLOSURE FURNISHED AND INSTALLED BY CONTRACTOR.
4. APT. MAIN DISCONNECT FURNISHED AND INSTALLED BY CONTRACTOR.

NOTES:
A. COVERS OF ALL ENCLOSURES CONTAINING CONDUCTORS CARRYING UNMETERED CURRENT SHALL BE EQUIPPED WITH APPROVED SEALING DEVICES.
B. METER ENCLOSURES AND DISCONNECTING AND OVERCURRENT PROTECTION DEVICES LOCATED OUTSIDE THE AREA WHERE THE SERVICE ENTERS THE BUILDING SHALL HAVE INSULATED NEUTRAL AND NEUTRAL CONNECTIONS IN ACCORDANCE WITH CODE REQUIREMENTS.
C. METER ENCLOSURES MUST BE MOUNTED WITH SIDES AND FRONT FACE VERTICALLY PLUMB.
D. SEE INSTALLATION INSTRUCTIONS THIS SECTION.
E. METERED AND UNMETERED CONDUCTORS SHALL NOT OCCUPY THE SAME RACEWAY.
F. ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
THREE-PHASE SELF-CONTAINED Meter Inspection and Installation Routine

Page 1 of 3 Inspection Date Wanted _____________________

Address __________________________Bldg_____Fl_____Apt/Rm ___ City/Town __________
Customer__________________________________Contractor ___________________________
Planner ___________________________________Telephone ___________________________
Remarks __

__

Inspector ___________________________________ Date Inspected _____________________
Remarks __

__

__

1. Address marked on stationary portion of meter enclosure............................. ___ Yes ___ No

2. Safe and permanent access to metering equipment.. ___ Yes ___ No

3. **Working clearances** in front of meter enclosure:
 min. 30" wide by 36" deep (min. 30" wide by 48" deep for 480 V) ___ Yes ___ No

4. Access clearances to meter enclosure:
 min. 24" wide by 6' 6" high and clear of obstructions ___ Yes ___ No

5. Customer’s service disconnect installed.. ___ Yes ___ No

6. Grounding electrode conductor installed and connected to
 Grounding Electrode System (NEC).. ___ Yes ___ No
 Not to be routed through or terminated in meter enclosure

7. Check for correct voltages ... ___ No check ___ Yes ___ No
THREE-PHASE SELF-CONTAINED Meter Inspection and Installation Routine

Page 2 of 3

8. Correct meter enclosure installed (3Ø, CL200) ... ___ Yes ___ No

9. Power leg in correct position .. ___N/A* ___ Yes ___ No
 Right-hand position in socket enclosures
 Center position in B-base enclosures

10. Line and load wires enter enclosure at approved locations................. ___ Yes ___ No

11. Any backfeed on line or load conductors.. ___ No check ___ Yes ___ No

12. Any faults in line or load conductors ___ No check ___ Yes ___ No

13. Was enclosure jumpered ... ___ Yes ___ No

14. Service entrance conduit type ... ___ Metallic ___ PVC (electrical)

15. Service conduit properly sized and supported ___ Yes ___ No

16. Weatherhead or gooseneck min. 6" above attachment point ___N/A* ___ Yes ___ No

17. Busbar min. 18" below attachment point (30" preferred) ___N/A* ___ Yes ___ No

18. Service conductors extend min. 24" from weatherhead............... ___N/A* ___ Yes ___ No

19. Service entrance conductors identified ... ___ Yes ___ No

20. Point of attachment to finished grade minimums met ___N/A* ___ Yes ___ No
 Residential -- drip loop-10', driveway-12', street-18', hwy-22'
 Commercial -- drip loop-12', bus-15', vehicular traffic-18', hwy-22'

21. Meter enclosure securely fastened with sides and face vertically plumb...... ___ Yes ___ No

22. Meter enclosure height max. 6' to top, min. 3' 6" to center of meter face...... ___ Yes ___ No

N/A* Not Applicable
THREE-PHASE SELF-CONTAINED Meter Inspection and Installation Routine

Page 3 of 3

23. Meter enclosure min. 1-foot horizontal clearance from inside corner ___ Yes ___ No

24. The edge of any metal or PVC terminal adapter, connector, or nipple entering meter box or tap box is covered with a nonmetallic bushing ___ Yes ___ No

25. Inspect meter enclosure for sealing hasp, openings sealed, block cond., etc. ___ Yes ___ No

26. Inspect and tighten all line, load, and neutral connections ___ Yes ___ No

27. Inspect for insulated neutral requirements (See 5-1-3 #10 (d)) ___ Yes ___ No

28. Install meter and seal enclosure ... ___ Yes ___ No

29. Place underground service label on meter enclosure............................... ___N/A* ___ Yes ___ No

30. Place 480 V label on meter enclosure and main disconnect ___N/A* ___ Yes ___ No

N/A* Not Applicable
Page 1 of 2

Commercial Metering Switchboard
Installation Routine 277/480V

Address ____________________________ Bldg ______ Fl ______ Apt/Rm ______ City/Town ___________

Customer __________________________________ Contractor _____________________________

Planner __________________________________ Telephone _______________________________

Remarks ___

__

Inspector __________________________ Date Inspected ________________________________

Remarks ___

__

1. Address marked on stationary portion of meter enclosure.. __ Yes ___ No

2. Enclosure door marked to identify internal equipment... __ Yes ___ No

3. Safe and permanent access to metering equipment... __ Yes ___ No

4. **Working clearances** in front of switchboard and meters:
 min. 30" wide by 48" deep.. __ Yes ___ No

5. Workspace permits at least a 90° opening of compartment door(s)............ __ Yes ___ No

6. Access clearances to meter enclosure and switchboard:
 min. 24" wide by 6' 6" high and clear of obstructions .. __ Yes ___ No

7. Grounding electrode conductor installed and connected to
 Grounding Electrode System (NEC)... __ Yes ___ No

8. DTE approved switchboard manufacturer ... __ Yes ___ No

SIM-ESIG

SIM-ESIG: 5-3
Commercial Metering Switchboard
Installation Routine 277/480V

Page 2 of 2

9. Barriers in switchboard compartment separating metering area from adjacent areas ... ___Yes ___No

10. Switchboard main disconnect size per manufacturer spec.. ___Yes ___No

11. One conductor of each phase and one neutral in each Switchboard line side conduit, when conduit fed ... ___Yes ___No

 A separate grounding conductor (green wire) should not be installed in the service conduits.

12. Outdoor weathertight equipment construction... ___N/A* ___Yes ___No

13. Line conductors identified in switchboard compartment.. ___Yes ___No

14. Power leg at center bus position .. ___N/A* ___Yes ___No

15. Any back feed on line or load conductors.. ___N/A* ___Yes ___No

16. Service entrance conduit type .. Metallic ___PVC (electrical) ___Pre-fab.Bus

17. Service conduit properly sized and supported ... ___N/A* ___Yes ___No

18. There are no unused metering positions .. ___Yes ___No

19. Meter sockets are DTE approved .. ___Yes ___No

N/A* Not Applicable
CURRENT TRANSFORMER CABINETS

1. Services Exceeding 200 Amperes.

Current transformers shall be used to meter Underground and Overhead Single-Phase commercial and residential services that exceed the capacity of a class 320 enclosure. All Three-Phase services that exceed the capacity of a class 200 enclosure are required to use or shall be converted to current transformers. Current transformer cabinets will generally be used for cable services from 250 kcmil through 500 kcmil and for bus head services up to and including 1000 amperes. Transockets are a combination of meter socket and current transformer cabinet and its application is limited to 400A.

2. Services Exceeding 1000 Amperes.

Services greater than 1000 amperes will use a switchboard for service entrance equipment with a current transformer section for metering.

3. Building Owner Responsibilities.

The customer’s contractor will furnish and install the current transformer cabinet. The customer’s contractor will install line and load side cable on commercial CT cabinet installations. The meter will be installed by DTE Electric in a current transformer rated meter enclosure furnished by and installed by the customer’s contractor. The enclosure must be approved by DTE Electric, UL Listed and Labeled. (For installation diagrams see pages 5-4-9 and 5-4-10.)

4. Equipment Grouping.

Indoor installations must have the meter enclosure and current transformer cabinet in the same room. Outdoor installations will have both units outside. The meter enclosure may be located on either side, above, or below the current transformer cabinet providing that proper clearance to grade or floor can be maintained. (See page 5-3-2.) The meter-wiring conduit will be trade size 1-1/4 inch metal. PVC is not permitted.

5. Equipment Access.

A current transformer cabinet and meter installed on a balcony, mezzanine, second floor, or above grade platform requires access by permanent stairway. Ladder access for reading and testing meters is not acceptable. The DTE Electric Planner must approve the installation of a current transformer cabinet on a balcony, mezzanine, or second floor with the meter enclosure located at floor or grade level. Access and working space must comply with 2008 NEC 110.26, Spaces About Electrical Equipment.
6. Equipment Use.

The line terminals on a current transformer cabinet will be used for service entrance conductors only. A terminal box (aka tap box) is preferred for grouped meter connections except to feed separately metered space conditioning, water heating, or electric vehicle charging station as shown in Section 7. In unusual cases, the DTE Energy Planner may grant an exception.

7. Equipment Relocation.

If the metering point is relocated, the existing current transformer cabinet can be left in place and used as a junction box providing the following procedure is followed:

(a) The customer’s contractor must furnish and install the required jumper bars.

(b) The customer’s contractor is responsible for keeping the customer in service during the cutover of circuits.

(c) The customer’s contractor must furnish and install the new current transformer cabinet subject to DTE Energy specifications and approval.

8.1 The following current transformer cabinets have been accepted for use in the DTE Energy Service Area. Manufacturers desiring to have their equipment listed may contact DTE Energy Meter Engineering 313 389-7711.

(a) Electrical Power Products, 2611 Elliott Ave., Troy, MI 48083, 248.583.6100

(b) Park Metal Product, 19197 Sherwood, Detroit, MI 48234, 313.366.2200, http://www.parkdetroit.com/

8.2 Approved Transockets are limited to 400A.

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Manufacturer</th>
<th>Cat#</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Phase 4 Wire</td>
<td>Milbank</td>
<td>U5944-XT-181</td>
<td>N/A</td>
</tr>
</tbody>
</table>
CURRENT TRANSFORMER INSTALLATIONS

1. Ordering Routine.

Following a satisfactory installation inspection, the Planner will order the installation of the meter and the current transformers (CTs) by issuing a Request for Work (RFW) number with a Meter Installation (MIC) job assigned to the appropriate Field Operations (FO) Supervisor / Field Service Automation (FSA).

The following information must be entered on the Job Meter Info screen:

(a) Number of CTs
(b) CT ratio
(c) Service voltage and phase (e.g. 120/240V 3Ø 4W-D)
(d) ____feet of meter conduit
(e) Meter type
(f) Attached demand (if a combination watt-hour and demand display is required)
(g) Meter location
(h) Demand load in kW

Note: Be sure to indicate in the MIC job notes the number of bus bars per phase on free standing switchboards. These should be noted if a 6-foot ladder is needed or if a key address is necessary.

2. Table of Bar Type Current Transformers.

<table>
<thead>
<tr>
<th>MMS Stock No.</th>
<th>Metering Ratio</th>
<th>Current Ratio</th>
<th>Nameplate Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>200000655</td>
<td>80:1</td>
<td>400:5</td>
<td>400 amps</td>
</tr>
<tr>
<td>200000970</td>
<td>160:1</td>
<td>800:5</td>
<td>800 amps</td>
</tr>
<tr>
<td>200000911</td>
<td>240:1</td>
<td>1200:5</td>
<td>1200 amps</td>
</tr>
<tr>
<td>200000957</td>
<td>400:1</td>
<td>2000:5</td>
<td>2000 amps</td>
</tr>
<tr>
<td>641-6043</td>
<td>600:1</td>
<td>3000:5</td>
<td>3000 amps</td>
</tr>
</tbody>
</table>

Notes:
(a) Maximum size for a CT cabinet is 160:1.
(b) 240:1 and larger CTs have multiple bus bars.

Planners will always size current transformers for the expected maximum demand load in amperes (see pages 12-2-6 and 12-2-7). Do not exceed nameplate rating.
3. **Service Changes.**

This includes increases and decreases in ampacity, single-phase to three-phase, and three-phase to single-phase conversions. It does not include changes in service location. Field Operations (FO) will decide if the service factors will allow existing CTs to be used. All CTs must be the same size and type.

The following information must be entered on the Job Meter Info screen:

(a) New demand load in amperes
(b) Meter number
(c) CT ratio
(d) Service voltage and phase
(e) Present meter type
(f) Attached demand
(g) Demand in kW
(h) Meter location
(i) Transocket
CURRENT TRANSFORMER CABINET FABRICATION STANDARDS

1. Minimum distance between live-parts that are not of the same phase is two inches. Ampacity of bare copper bus is 1000 amperes per square inch of cross-sectional area (thickness x width). Ampacity of aluminum bus is 700 amperes per square inch. Minimum bus bar thickness is 1/4 inch. (See 2008 NEC 366.23 Ampacity of Conductors.)

2. Fabrication must be weather resistant for either indoor or outdoor installations. National Electrical Manufactures Association (NEMA) Type 3R.

3. Cabinets must have an acceptable sealing hasp or three-point latch.

4. Handles shall be installed on both sides to provide a grip for the meter installer.

5. 7/16"-14 jumpering studs must be provided for jumper installation on future current transformer changes.

6. Cabinets shall be metallic with a minimum wall thickness of #14 Metal U.S. Manufactures’ Standard Gage (MSG). 2008 NEC 312.10 (B) Strength, “If constructed of sheet steel, the metal thickness shall not be less than 1.35 mm (0.053 in.) uncoated.”

7. The cabinet must have a minimum of one inch airspace between any wall, back, metal partition or door and any current-carrying part of the inside of the cabinet. (See 2008 NEC 312.11 Spacing, (A)(3) Live Parts.)

8. All exposed edges of cabinets shall be rounded.

9. At a minimum, all cabinets must meet all specifications and requirements of 2008 NEC Article 312, Cabinets, Cutout Boxes, and Meter Socket Enclosures.

10. Minimum inside dimensions are 48" high, 24" wide and 10" deep.

11. Cabinets must be corrosion resistant both inside and outside. [See 2008 NEC 312.10(A).]

12. Refer to current transformer cabinet bus bar details SIM-ESIG Page 5-6-7.

13. Bus termination points must meet minimum bending space requirements for any conductor used. For installations exceeding 800 amperes, 3 conductors per phase may be required. In some cases, cabinet extensions or an increase in cabinet size may be necessary to meet bending space requirements. For required minimums see 2008 NEC, Table 312.6(A), Minimum Wire-bending Space at Terminals and Minimum Width of Wiring Gutters.

14. Terminal connectors must be UL listed for the size and type of conductors used.

15. All cabinets will be marked TOP ONLY with 1" high letters on inside back of cabinet.

The Detroit Edison Company assumes no responsibility for injury or damage arising from the use of these specifications.
MINIMUM SPECIFICATIONS FOR CUSTOMER OWNED
CURRENT TRANSFORMER CABINETS

NOTES:
1. SEE PAGE 5-4-5 FOR GENERAL NOTES ON CURRENT TRANSFORMER CABINET.
2. UNIT MUST BE UL LISTED. LABELS MUST ALSO IDENTIFY MODEL NUMBER AND RATINGS.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR
DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM
CURRENT TRANSFORMER / TRANSOCKET CABINET
INSTALLATION STANDARDS

*Not all below apply for Transocket

The building owner is responsible for the selection, purchase, installation, and maintenance of the current transformer cabinet. All installations must meet the following DTE Electric specifications:

1. The 1-1/4 inch metal conduit that feeds the meter enclosure must not interfere with the bus bars or the current transformers.

2. The 1-1/4 inch metal conduit between the meter enclosure and the CT cabinet must not be longer than 20 feet or shorter than 3 inches. The conduit may only enter the meter enclosure as specified on page 5-3-19.1, and the CT cabinet through the top, bottom, or sides (including between the CT mounting supports).

3. The meter enclosure must be mounted plumb with a minimum height of 42 inches from the center of the meter to finished grade and a maximum height of 6 feet to the top of the enclosure. Door mounting of the meter enclosure will be permitted only when no space is available within the area to allow connection with a 20 foot 1-1/4 inch conduit run. Must be preapproved by DTE Electric Planner.

4. The current transformer cabinet shall be installed a minimum of 6 inches above the floor indoors or 18 inches above grade outdoors. Maximum mounting height is 9 feet from floor or grade to a point midway between the current transformer terminal boards.

5. No service or load conduit or conductors shall enter into or pass through the cabinet between the CT mounting supports. One conductor of each phase and one neutral shall be installed in each line conduit. Rear entrance is acceptable on 48-inch high cabinets.

6. On a 4-wire, delta-connected service where the midpoint of one phase is grounded, the phase conductor having the higher voltage to ground shall be durably and permanently marked by an outer finish that is orange in color. (See 2005 NEC 110-15 High-Leg Marking.)

7. The center phase must be the power leg on a 3-phase, 4-wire delta connected service. (See 2005 NEC 408-3 (E), Phase Arrangement.)

8. The center phase position will not be used on a single-phase installation.

9. Jumpers installed by contractors must be trained as shown in drawing on page 5-4-8 for CT cabinets and on page 5-4-20 for Transocket cabinets so that current transformers can be installed with jumpers in place.

10. Contractor is responsible for marking on the inside of the cabinet the word LINE to identify the incoming Line (Utility) conductors.

DTE assumes no responsibility for injury or damage arising from the use of these specifications.
TYPICAL OVERHEAD CURRENT TRANSFORMER CABINET INSTALLATION

- **MIN 3"**
- **MAX 20"**
- **SERVICE**
- **METER ENCLOSURE**
- **1-1/4" METAL CONDUIT**
- **TOP ONLY LINE**
- **SERVICE**
- **7/16" - 14 JUMPERING STUDS**
- **HANDLE**
- **(ONE EACH SIDE)**
- **9" X 1-1/2" ROUND 3/8"**
- **LOAD**
- **SWITCH OR CIRCUIT BREAKER**

TYPICAL UNDERGROUND CURRENT TRANSFORMER CABINET INSTALLATION

- **ACTUAL CONDUIT LENGTH**
- **(3" MIN, 20" MAX)**
- **NOTE:**
- **DO NOT MOUNT METER ENCLOSURE ON DOOR UNLESS NO OTHER SPACE IS AVAILABLE WITHIN 20 FEET**

NOTE:

SEE INSTALLATION INSTRUCTIONS ON 5-4-7.

DTE assumes no responsibility for injury or damage arising from the use of these specifications.
OVERHEAD BUS BAR SERVICE
CURRENT TRANSFORMER CABINET INSTALLATION

1. SERVICE CONDUIT MAY ENTER CURRENT TRANSFORMER CABINET FROM TOP, BACK, BOTTOM OR SIDES.
 NO SERVICE CONDUIT SHALL ENTER CABINET BETWEEN CURRENT TRANSFORMER TERMINAL BOARDS.
 NO SERVICE CONDUCTORS OR GROUNDING JUMPERS ARE ALLOWED BEHIND, IN FRONT OR THROUGH
 CURRENT TRANSFORMER MOUNTING AREA BETWEEN LINE AND LOAD BUS BARS.

2. SEE PAGES 5-4-10 AND 5-6-5 FOR BUS BAR SERVICE DETAILS.

3. METER ENCLOSURES SHALL BE SECURELY FASTENED TO WALL USING SCREWS, ANCHOR BOLTS, TOGGLE
 BOLTS OR OTHER MEANS APPROVED BY THE DECO.

4. 1 1/4" METAL CONDUIT FOR METER WIRES MAY ENTER THE METER ENCLOSURE AS SHOWN ON 5-3-19.1.

5. ON THREE PHASE DELTA SERVICE THE CENTER TERMINAL SHALL BE CONNECTED TO THE POWER WIRE
 (208 VOLTS TO GROUND). THE CENTER TERMINAL WILL NOT BE USED ON A SINGLE PHASE INSTALLATION.

6. POWER LEG IDENTIFICATION PER 2008 N.E.C. 110.15, 230.56 AND 408.3(E) & (F).

7. CURRENT TRANSFORMER CABINET SHALL BE INSTALLED A MINIMUM DISTANCE OF 6" ABOVE FLOOR OR 18"
 MINIMUM ABOVE OUTDOOR GRADE. MAXIMUM MOUNTING HEIGHT ABOVE FLOOR OR OUTDOOR GRADE IS 9' TO
 CENTER OF CURRENT TRANSFORMER MOUNTING SECTION. MINIMUM HEIGHT OF BUS BAR AT SERVICE IS 15'.

8. ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE
 COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION
 MUST CORRECT THE SITUATION.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY
OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
CLEARANCE REQUIREMENTS FOR METER BOX AND CURRENT TRANSFORMER INSTALLATIONS

MINIMUM CLEARANCE DEPTH IN FRONT OF EQUIPMENT

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>0-150V</th>
<th>151-600V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INSULATED WALL IN FRONT OF EQUIPMENT</td>
<td>3'</td>
<td>3'</td>
</tr>
<tr>
<td>2 WALL IN FRONT OF EQUIPMENT GROUNDED TO EARTH</td>
<td>3'</td>
<td>3 1/2'</td>
</tr>
<tr>
<td>3 EDISON METERING EQUIPMENT ACROSS FROM OTHER EQUIPMENT WITH EXPOSED LIVE PARTS</td>
<td>3'</td>
<td>4'</td>
</tr>
<tr>
<td>4 LADDER REQUIRED TO REACH CURRENT TRANSFORMER COMPARTMENT FOR INSTALLATION</td>
<td>5'</td>
<td>5'</td>
</tr>
</tbody>
</table>

THESE DIMENSIONS ARE FOR INDOOR OR OUTDOOR INSTALLATIONS

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
BUS BAR SERVICE DETAILS – 1000 AMPERE CAPACITY
CURRENT TRANSFORMER CABINET

NOTES:
1. ARRANGEMENT OF BUS INSIDE CABINET IS TYPICAL; OTHER
 ARRANGEMENTS MUST FIRST BE APPROVED BY DECO.
2. FABRICATE DUCT IN ACCORDANCE WITH NEMA BUSWAY
 STANDARDS.
3. ALL DIMENSIONS SHOWN SHALL BE HELD.
4. ALL BOLTS, NUTS, & SCREWS SHALL BE CADMIUM PLATED,
 WASHERS SHALL BE GALVANIZED.
5. BUFFING, BRUSHING OR POLISHING PLATED ALUMINUM WILL
 REMOVE THE PROTECTIVE PLATE thus causing undue
 OXIDATION OF THE ALUMINUM.
6. ELECTRICAL GRADE COPPER OR ALUMINUM BUSSES ARE
 ACCEPTABLE AS CURRENT CARRYING CONDUCTORS.

BUS SERVICE ENTERS TOP OF CURRENT TRANSFORMER CABINET
WHEN NECESSARY TO EXTEND SERVICE HEAD ABOVE CURRENT
TRANSFORMER CABINET TO PROVIDE REQUIRED CLEARANCE
TO GRADE FOR SERVICE HEAD.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY
OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
CURRENT TRANSFORMER CABINET INSTALLATION
ONE, TWO OR THREE 250 THRU 500 KCMIL PER PHASE

ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

RE F ER TO 5-4-13 NOTES 2 THROUGH 11
THE INSTALLATION OF 2 SERVICE ENTRANCE CONDUITS, THROUGH A BUILDING WALL, WITHOUT THE USE OF STANDARD RADIUS ELBOWS WILL REQUIRE A SERVICE JUNCTION BOX. THE SERVICE JUNCTION BOX WILL BE INSTALLED EITHER AT THE TOP OR BOTTOM OF THE CURRENT TRANSFORMER CABINET.

-any bond between the meter enclosure and joint users that interferes with removing the cover on the meter box is a violation of nec 250.94 (3). the joint user who created the violation must correct the situation.

-wiring diagram

-dte electric company assumes no responsibility for injury or damage arising from the use of this specification diagram.
CURRENT TRANSFORMER CABINET INSTALLATION
LOADS GREATER THAN 800 AMPS REQUIRING 3 CONDUCTORS PER PHASE

NOTES:
1. FOR LOADS GREATER THAN 800 AMPERES REQUIRING 3 CONDUCTORS PER PHASE A SERVICE JUNCTION BOX MAY BE USED.
2. THE SERVICE JUNCTION BOX MAY BE INSTALLED AT EITHER TOP OR BOTTOM OF THE CURRENT TRANSFORMER CABINET.
3. ONE CONDUCTOR OF EACH PHASE AND ONE NEUTRAL SHALL BE INSTALLED IN EACH CONDUIT.
4. SERVICE CONDUIT MAY ENTER CURRENT TRANSFORMER CABINET FROM TOP, BACK, BOTTOM OR SIDES.
NO SERVICE CONDUIT SHALL ENTER CABINET BETWEEN CURRENT TRANSFORMER TERMINAL BOARDS.
NO SERVICE CONDUCTORS OR GROUNDING JUMPERS ARE ALLOWED BEHIND IN FRONT OR THROUGH CURRENT TRANSFORMER MOUNTING AREA BETWEEN LINE AND LOAD BUS BARS.
5. 1/4" METAL CONDUIT FOR METER WIRES MAY ENTER AS SHOWN ON Fig 9.1
6. METER EQUIPMENT ASSEMBLY EXCLUDING METER ENCLOSURE) MAY BE INSTALLED A MINIMUM DISTANCE OF 6" ABOVE FLOOR INDOOR.
18" ABOVE GRADE OUTDOOR WITH A MAXIMUM DISTANCE OF 9" TO THE MIDDLE OF CT SECTION IN CABINET.
7. METER ENCLOSURE MAY BE INSTALLED A MINIMUM DISTANCE OF 42" FROM CENTER OF METER GLASS TO FLOOR OR GRADE WITH A MAXIMUM DISTANCE OF 9" TO THE TOP OF THE ENCLOSURE.
8. CONDUIT MAY ENTER THE SERVICE JUNCTION BOX FROM TOP, BOTTOM, SIDES OR BACK.
9. THE SERVICE JUNCTION BOX SHALL BE EQUIPPED WITH APPROVED SEALING DEVICES.
10. POWER LEG IDENTIFICATION PER 2008 NEC, 110.15, 230.56 AND 406.3(E) & (F).

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
TYPICAL CURRENT TRANSFORMER CABINET INSTALLATION

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
Current Transformer Cabinet Inspection Routine

Page 1 of 4

Inspection Date Wanted _______________________

Address ______________________ Bldg _____ Fl _____ Apt/Rm ___ City/Town ________

Customer ____________________________ Contractor __________________________

Planner ________________________________ Telephone __________________________

Remarks __

Inspector ______________________________ Date Inspected ______________________

Remarks __

0. DTE Electric approved CT cabinet / transocket ... ___ Yes ___ No

1. Address marked on stationary portion of meter enclosure............................. ___ Yes ___ No

2. Meter enclosure and CT cabinet grouped .. ___ Yes ___ No
 Residential -- both outside
 Commercial / Industrial -- both inside or both outside

3. Safe and permanent access to metering equipment................................. ___ Yes ___ No

4. **Working clearances** in front of meter enclosure and CT cabinet:
 min. 30" wide by 36" deep (min. 30" wide by 48" deep for 480 V) ___ Yes ___ No

5. Workspace permits at least a 90° opening of CT cabinet door....................... ___ Yes ___ No

6. Access clearances to meter enclosure and CT cabinet:
 min. 24" wide by 6' 6" high and clear of obstructions ___ Yes ___ No

7. Customer’s service disconnect(s) installed ... ___ Yes ___ No
8. Grounding electrode conductor installed and connected to
 Grounding Electrode System (NEC) ... ___ Yes ___ No
9. Check for correct voltages ... ___ No check ___ Yes ___ No
10. CT cabinet mounted properly and fastened securely ___ Yes ___ No
11. CT cabinet min. 48" high by 24" wide by 10" deep............................ ___ Yes ___ No
12. CT cabinet max. 9' from center of CT mounting section to floor or grade.... ___ Yes ___ No
13. CT cabinet inside min. 6" to floor... ___ N/A* ___ Yes ___ No
14. CT cabinet outside min. 18" to finished grade.................................. ___ N/A* ___ Yes ___ No
15. CT bars installed properly with jumpering studs on right-hand side for CT cabinet
 and left-hand side for Transsocket... ___ Yes ___ No
16. Check for proper spacing between bus bars with template.................. ___ Yes ___ No
17. Area between line and load bus bars is free of conductors entering or
 passing through. (Free space must be clear for current transformers) ___ Yes ___ No
18. One conductor of each phase and one neutral in each CT cabinet line side
 conduit, when conduit fed.. ___ Yes ___ No
 A separate grounding conductor (green wire) should not be installed in the service conduits.
19. Neutral bus tapped for 10-32 round head screw (provided) ___ Yes ___ No
20. Approved hasp or three-point latch provided for sealing (no pop rivets)..... ___ Yes ___ No
21. CT cabinet safely jumpered using jumpers that will not
 interfere with the installation of the current transformers............... ___ N/A* ___ Yes ___ No
22. Line conductors identified .. ___ Yes ___ No

N/A* Not Applicable
Current Transformer Cabinet Inspection Routine

23. Power leg at center bus position .. ___N/A* ___Yes ___No
24. Any backfeed on line or load conductors ___No check ___Yes ___No
25. Any faults in line or load conductors ... ___No check ___Yes ___No
26. Service entrance conduit type ...___ Metallic ___PVC (electrical) ___Pre-fab. Bus
27. Service conduit properly sized and supported ___N/A* ___Yes ___No
28. Weatherhead min. 6" above attachment point ___N/A* ___Yes ___No
29. Bus bar min. 18" below attachment point (30" preferred) ___N/A* ___Yes ___No
30. Service conductors extend min. 24" from weatherhead ___N/A* ___Yes ___No
31. Service entrance conductors or bus bars identified ___Yes ___No
32. Point of attachment to finished grade minimums met ___N/A* ___Yes ___No
 Residential -- drip loop-10', driveway-12', street-18', hwy-22'
 Commercial -- drip loop-12', bus-15', vehicular traffic-18', hwy-22'
33. Correct meter enclosure/socket installed: (form 9S or form 5S) ___Yes ___No
34. Inspect meter enclosure for sealing hasp, openings sealed, block cond., etc. ___Yes ___No
35. Meter enclosure securely fastened with sides and face vertically plumb ___Yes ___No
36. Meter enclosure height max. 6' to top, min. 3' 6" to center of meter face.... ___Yes ___No
37. Meter enclosure and CT cab. min. 1' horiz. clearance from inside corner..... ___Yes ___No
38. The edge of any metal or PVC terminal adapter, connector, or nipple entering meter box or CT cabinet is covered with a nonmetallic bushing ___Yes ___No

N/A* Not Applicable
39. Meter conduit enters meter enclosure at approved location.......................... ___Yes ___No

40. Meter conduit from CT cabinet min. 1-1/4 inch metal ___N/A* ___Yes ___No
 (EMT, IMC or RMC) **PVC conduit is not acceptable**

41. Meter conduit length min. 3 inches, max. 20 feet......................... ___N/A* ___Yes ___No

42. Meter enclosure on CT cabinet door:
 (min.1-1/4 inch chase nipple and door made nonremovable)....... ___N/A* ___Yes ___No

43. **NO L.B.** use allowed with LINE side (unmetered) conductors. ALL conductors access
 MUST BE SEALABLE by DTE Electric up to the metering equipment. All fittings must
 conform with 2014 NEC 344.42 and 314.15.

44. The **Transsocket** Neutral bar is grounded. ___N/A* ___Yes ___No

 N/A* **Not Applicable**

Note: Not all of the above apply for Transsockets.
TRANSOCKET INSTALLATIONS

1. DTE Electric defines *Transocket* as a single enclosure that contains a meter and current transformers and has the purpose of measuring electric energy flow. It includes a meter socket for a form 9S meter, a test switch, and current transformers mounting bars.

 Currently approved Transockets are limited to 400A.

2. Transockets must be preapproved by DTE Electric - Meter Engineering in order to be accepted for use in our service territory. Only preapproved transockets will be energized. The DTE Electric approved transockets are listed on 5-4-2.

3. The meter and current transformers Ordering Routine is listed on 5-4-3.

4. The transocket accommodates the installation of approved Bar Type Current Transformers.

5. The transocket installation requirements must meet or exceed the current transformer installation standards (5-4-7, 5-4-10, 5-4-12) and the meter enclosure installation instructions (5-3-2 paragraphs 13, 14, 15, and 17).

6. Transockets can be fed from Tap box with Service Planning approval.
TYPICAL TRANSOCKET INSTALLATION

TYPICAL TRANSOCKET INSTALLATION

METER SOCKET VIEW

OVERHEAD

UNDERGROUND

NOTE: Install Conductors & Jumpers on the left side studs and reserve the right side studs for CTs install.

BUSHINGS REQUIRED

ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

CLEARANCE REQUIREMENTS FOR TRANSOCKET INSTALLATIONS

THESE DIMENSIONS ARE FOR INDOOR OR OUTDOOR INSTALLATIONS

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>0-150V</th>
<th>151-600V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1* INSULATED WALL IN FRONT OF EQUIPMENT</td>
<td>3'</td>
<td>3'</td>
</tr>
<tr>
<td>2* WALL IN FRONT OF EQUIPMENT GROUNDED TO EARTH</td>
<td>3'</td>
<td>3 1/2'</td>
</tr>
<tr>
<td>3* EDISON METERING EQUIPMENT ACROSS FROM OTHER EQUIPMENT WITH EXPOSED LIVE PARTS</td>
<td>3'</td>
<td>4'</td>
</tr>
<tr>
<td>4 LADDER REQUIRED TO REACH CURRENT TRANSFORMER COMPARTMENT FOR INSTALLATION</td>
<td>5'</td>
<td>5'</td>
</tr>
</tbody>
</table>

*CONDITIONS 1, 2 & 3 ARE MINIMUM WORKING SPACE PER NFPA 70 2008 NEC TABLE 110.26(A)(1) WORKING SPACES

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM
FOR MAINTENANCE PURPOSES ONLY
BLADE MOUNT METERING CURRENT TRANSFORMERS
FOR INSTALLATION IN 3Ø PADMOUNT TRANSFORMERS

1. Description.
Blade mount current transformers (CTs) are similar to bar CTs except they do not have a primary current bar. Instead, they have a window opening which allows them to fit over the secondary spade terminals in padmount transformers. In effect, the secondary spade terminal becomes the CT primary bar. A grabber provides a firm grip on the terminal. Meter Engineering has tested and accepted these CTs as meeting Detroit Edison performance and physical requirements.

2. Application Restrictions.
Use of these CTs is permitted for customers who meet all of the following requirements:
(a) Single customer, single rate account. (Multiple rate accounts are excluded.)
(b) Customer is served from a single three-phase padmount transformer.
(c) Customer is the only one served from that padmount transformer.

Note: The customer’s electrical contractor must confirm acceptance of this metering method with the Detroit Edison Planner before beginning construction.

Detroit Edison will no longer allow the mounting of meter enclosures on the padmount transformer.
When an existing padmount transformer needs to be replaced, the customer responsibility is to supply and install a post mounted ZS3-20 meter enclosure and associated conduit. See page 5-5-3 for details.

4. Table of Window Type Current Transformers.

<table>
<thead>
<tr>
<th>MMS Stock No.</th>
<th>Metering Ratio</th>
<th>Current Ratio</th>
<th>Nameplate Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>641-3007</td>
<td>80:1</td>
<td>400:5</td>
<td>400 amps</td>
</tr>
<tr>
<td>641-3012</td>
<td>160:1</td>
<td>800:5</td>
<td>800 amps</td>
</tr>
<tr>
<td>641-3015</td>
<td>300:1</td>
<td>1500:5</td>
<td>1500 amps</td>
</tr>
<tr>
<td>641-3018</td>
<td>600:1</td>
<td>3000:5</td>
<td>3000 amps</td>
</tr>
</tbody>
</table>

Planners will always size current transformers for the expected maximum demand load in amperes (not the connected load). Do not exceed nameplate rating.
SPECIFICATIONS FOR CURRENT TRANSFORMER
SECTION OF CUSTOMER OWNED SWITCHBOARDS

1. The building owner is responsible for the selection, purchase, installation, and maintenance of the switchboard.

2. The switchboard must provide a current transformer section which is in compliance with the specifications on page 5-6-6. The switchboard may also provide facilities for installation of the watt-hour meter and its enclosure in compliance with the specifications on page 5-6-3.

3. The current transformer section of the switchboard together with all unmetered buswork shall be located behind a sealable access.

4. Suitably plated electrical grade copper aluminum bus is acceptable as current carrying conductors.

5. A single copper bus bar may be used up to and including 1200 amperes. Above 1200 amperes two bars are required. Two or more aluminum bus bars are required for currents greater than 850 amperes.

6. All bus bars must be minimum ¼” thick. The service capacity determines the number of bars required per phase and their width (in accordance with the specifications on page 5-6-5). Where multiple bars are used, they must be separated by a ¼” spacer hold. Units containing bus bar for Current Transformer installation must be shipped with details that insure vertical and horizontal alignment during shipping and the installation process. These shipping details shall be removed prior to current transformer installation.

7. Single bus bar configurations may be mounted either edge to front or flat to front. Multiple bus bar configurations must be mounted edge to front.

8. The neutral bus meter connection must be extended forward with a 10-32 screw perpendicular to the front face of the cabinet. See page 5-6-2.

9. “N” neutral bus may be at either side of bus ducts provided bus spacings are maintained. Delta installations require “P” power bus in center position with the two “L” lighting buses on each side of the power bus.

10. Dimensions and drilling details for the buswork in the current transformer section of the switchboard are on page 5-6-6. These are given per ANSI C12.11 1978.

11. Template shall be used by the Service Planner to gauge the current transformer mounting space before requesting current transformer installation. All dimensions given for the current transformer section of the switchboard are held in accordance with current transformer specifications as per ANSI C12.11 1978.
12. Dimension and drilling details for the bus at the service head are on page 5-6-5. No other bus service head configurations are allowed.

13. Information pertaining to the mounting of the meter enclosure, and the current transformer section door area is on page 5-6-3.

14. Switchboards must be labeled according to their feed and load configuration. Switchboards and or transformer compartments must be labeled as, “Bottom Connected” if there feed is bottom connected. The manufacture shall label these units. This is the ultimate responsibility of the contractor and or customer. Failure to do so may result in service installation delays.
CURRENT TRANSFORMER SECTION
OF CUSTOMER OWNED SWITCHBOARD
400-1000 AMPS

1. ON FLAT SIDE TO FRONT BAR PLACEMENT SHOWN, ALL BUS BARS MUST BE MINIMUM 3/4" THICK

2. MINIMUM DOOR OPENING IS 27-1/2" HIGH AND MUST BE CENTERED OVER CURRENT TRANSFORMERS. SPACING FROM BUS TO DOOR MUST BE CONSIDERED. THIS INCLUDES DOOR FLANGES, REINFORCEMENT SHAPES AND LATCHING MECHANISMS.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
CURRENT TRANSFORMER SECTION
OF CUSTOMER OWNED SWITCHBOARD
1200-3000 AMPS

SWITCHBOARD AMPERE RATING

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 - 3000</td>
<td>6"</td>
<td>6"</td>
<td>6"</td>
<td>8"</td>
<td>6"</td>
</tr>
</tbody>
</table>

NOTES:

1. ALL BUS BARS MUST BE ¼" THICK AND SPACING BETWEEN BARS MUST BE ¼".

2. MINIMUM DOOR OPENING IS 27 - ½" HIGH AND MUST BE CENTERED OVER CURRENT TRANSFORMERS. SPACING FROM BUS TO DOOR MUST BE CONSIDERED. THIS INCLUDES DOOR FLANGES, REINFORCEMENT SHAPES AND LATCHING MECHANISMS.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
METER ENCLOSURE MOUNTING FOR CURRENT TRANSFORMER COMPARTMENTS IN SWITCHBOARDS

NOTES:

1. BARRIERS ARE REQUIRED TO SEPARATE THE METERING AREA FROM ANY OTHER AREAS IN THE SWITCHBOARD ASSEMBLY WHICH CONTAIN EQUIPMENT OR CONDUCTORS CARRYING METERED CURRENT.

2. THE CL20, CT RATED METER ENCLOSURE MUST BE MOUNTED WITHIN VIEWING RANGE OF THE CURRENT TRANSFORMER COMPARTMENT. IT MAY BE MOUNTED ON THE DOOR OF THE CURRENT TRANSFORMER COMPARTMENT ONLY WHEN NO OTHER SPACE IS AVAILABLE. 1-1/4" METAL CONDUIT OR CHASE NIPPLE ENTRY MUST NOT INTERFERE WITH BYPASS HANDLE OR TEST SWITCHES.

3. THE MAXIMUM LENGTH OF 1-1/4" METAL CONDUIT THAT CAN BE RUN FROM THE CT RATED METER ENCLOSURE TO THE CURRENT TRANSFORMER SECTION OF SWITCHBOARD IS 20 FEET.

4. THE CL20, CT RATED METER ENCLOSURE MUST BE MOUNTED AT A MINIMUM DISTANCE OF 3'-6" FROM THE CENTER OF METER TO FINAL GRADE AND A MAXIMUM DISTANCE OF 6' FROM TOP OF METER ENCLOSURE TO FINAL GRADE.

5. THE DOOR OF THE CURRENT TRANSFORMER COMPARTMENT MUST BE EQUIPPED WITH A DTE APPROVED SEALABLE LATCH. SEE PAGES 5-6-9 AND 10.

6. ANY BOND BETWEEN THE METER ENCLOSURE AND JOINT USERS THAT INTERFERES WITH REMOVING THE COVER ON THE METER BOX IS A VIOLATION OF NEC 250.94 (3). THE JOINT USER WHO CREATED THE VIOLATION MUST CORRECT THE SITUATION.

DTE ELECTRIC COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
METER WIRING RACEWAY INSTALLATIONS
THROUGH SWITCHBOARD COMPARTMENTS

1. BARRIERS ARE REQUIRED TO SEPARATE THE METERING AREA FROM ANY OTHER AREAS IN THE SWITCHBOARD ASSEMBLY WHICH CONTAIN EQUIPMENT OR CONDUCTORS CARRYING METERED CURRENT.

2. THE METER ENCLOSURE MUST BE MOUNTED WITHIN VIEWING RANGE OF THE CURRENT TRANSFORMER COMPARTMENT. IT MAY BE MOUNTED ON THE DOOR OF THE CURRENT TRANSFORMER COMPARTMENT ONLY WHEN NO OTHER SPACE IS AVAILABLE.

3. THE MAXIMUM LENGTH OF 1 ¼" METAL CONDUIT THAT CAN BE RUN FROM THE METER ENCLOSURE TO THE CURRENT TRANSFORMER SECTION OF SWITCHBOARD IS 20 FEET.

4. THE METER ENCLOSURE MUST BE MOUNTED AT A MINIMUM DISTANCE OF 3'6" FROM THE CENTER OF COMPARTMENT ONLY WHEN NO OTHER SPACE IS AVAILABLE. THE DOOR OF THE CURRENT TRANSFORMER COMPARTMENT MUST BE EQUIPPED WITH A EDISON APPROVED SEALABLE LATCH. SEE PAGES 5-6-9 AND 10.

5. THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
DRILLING DETAILS FOR BUS AT SERVICE HEAD

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
BUS BAR DRILLING DETAILS AND DIMENSIONS FOR CUSTOMER OWNED CURRENT TRANSFORMER CABINETS

9/16" SLOTTED HOLE
SEE NOTE 1

1"

3/4"

5/8"

7-3/8" HOLD

6-1/8" HOLD

10-7/8" HOLD

CURRENT TRANSFORMER
CABINET SINGLE BUS

1/4"

MIN.

2" MIN.

3" MAX.

NOTE:

1. A SINGLE 9/16" HOLE MAY BE USED IN LIEU OF THE SLOTTED HOLE AS LONG AS THE HOLE IS PLACE WITHIN THE SPECIFIED LIMITS OF THE SLOTTED HOLE.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
BUS BAR DRILLING DETAILS AND DIMENSIONS
FOR CUSTOMER OWNED SWITCHBOARDS

NOTE:
1. A SINGLE 9/16" HOLE MAY BE USED IN LIEU OF THE SLOTTED HOLE AS LONG AS THE HOLE IS PLACED WITHIN THE SPECIFIED LIMITS OF THE SLOTTED HOLE.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
DIMENSIONS AND SPACINGS FOR PLUGS, SCREWS & HOLES ARE IDENTICAL FOR BOTH SIDES OF THE TEMPLATE WITH THE EXCEPTION OF THE BAR SPACING GAUGE AND ITS TWO ASSOCIATED SCREWS.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
APPROVED SEALING HASP
CT COMPARTMENT DOOR

MATERIAL: 16 GAUGE NGG STEEL MINIMUM

NOTES:
1. PANEL MUST BE SEALABLE AT OPPOSITE DIAGONAL CORNERS OR SECURED BY CARRIAGE BOLTS OR WELDED SEAMS. CARRIAGE BOLTS MUST BE USED WHEREVER POSSIBLE.
2. SINGLE DOORS MUST USE A SEALING HASP AS SHOWN ABOVE. MAXIMUM DOOR WIDTH IS 36 INCHES.
3. DOUBLE DOORS FOR CABINETS OVER 36 INCHES IN WIDTH MUST USE THE SEALING HASP AT THE TOP OF THE DOOR AS SHOWN IN THE DRAWING. THIS WILL PREVENT PARTIAL OPENING OF DOUBLE DOORS WITH SEALING INTACT.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
APPROVED SEALING HASP CT
COMPARTMENT DOOR

COVER SEALING OPTIONS

OPTION 1
RING NUT ON SHAFT
WITH SEALING HOLE

OPTION 2
SCREW HEADS
WITH SEALING HOLE

OPTION 3
CARRIAGE BOLTS

INSTALLED CARRIAGE BOLTS
OR SEALING SCREWS IN OPPOSITE CORNERS

DOOR HASP SEALING
REQUIREMENTS

SPOT WELD
(NO RIVETS)

ALL FRONT PANELS
COVERING UNMETERED PORTIONS
OF THE SWITCHBOARD MUST BE
SEALABLE OF DOUBLE NUTTED,
(TAMPER-PROOF SCREWS ARE NOT
ACCEPTABLE)

SEAL OPPOSITE
CORNERS

27 1/2" MIN.

SINGLE VERTICAL DOOR HINGED

NOTES:
1. PANEL MUST BE SEALABLE AT
 OPPOSITE DIAGONAL CORNERS
 OR SECURED BY CARRIAGE BOLTS
 OR WELDED SEAMS. CARRIAGE
 BOLTS MUST BE USED WHEREVER
 POSSIBLE.
2. SINGLE DOORS MUST USE A
 SEALING HASP AS SHOWN ABOVE.
 MAXIMUM DOOR WIDTH IS 36 INCHES.
3. DOUBLE DOORS FOR CABINETS
 OVER 36 INCHES IN WIDTH
 MUST USE THE SEALING
 HASP AT THE TOP OF THE DOOR
 AS SHOWN IN THE DRAWING.
 THIS WILL PREVENT PARTIAL
 OPENING OF DOUBLE DOORS WITH
 SEALING INTACT

36" MAX DOOR WIDTH

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY
OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
SWITCHBOARDS

1. **Services from 400 to 1000 Amperes.**

 Cable services from 400 to 1000 amperes may be served at the customer’s preference by a switchboard with a current transformer section. The customer may elect to use bus head entrance where overhead service is agreed upon. The meter will be installed by Detroit Edison in a Detroit Edison approved CT-rated enclosure, furnished and installed by the customer’s contractor (see subsection 5-8). No other enclosure or meter block will be accepted. See pages 5-6-3 & 5-6-4 for acceptable configurations.

2. **Services Exceeding 1000 Amperes.**

 Services greater than 1000 amperes require a switchboard with a current transformer section. These are usually custom-built for the installation. Consult the Detroit Edison Planner for application restrictions.

3. **Building Owner Responsibilities.**

 The building owner and those responsible for the service installation are also responsible for the selection and installation of switchboards. The building owner will furnish, own, and maintain such equipment except for the Detroit Edison current transformers and the metering wires between the current transformers and the associated meter.

4. **Conditions for Service.**

 Detroit Edison reserves the right to refuse connection to service equipment that does not satisfactorily fulfill the following conditions:

 (a) Adequate service termination.

 (b) Separation of metered and unmetered conductors.

 (c) Sufficient access and working space for inspection, installation, maintenance, and testing of metering equipment. (See 2005 NEC 110.26, *Spaces About Electrical Equipment.*)

 (d) Assurance of proper operation of metering equipment.

 (e) Adequate clearances for installing current transformers commonly used by Detroit Edison to meter the demand capability of the installed equipment.

 (f) Adequate provisions for Detroit Edison sealing. (See pages 5-6-9 and 5-6-10.)
(g) The contractor and customer are responsible for having the switchboard and current transformer section properly and indelibly labeled as either top or bottom connected. This label should be easily viewed after the unit is installed.

5. Equipment Inspection.

Following is a list of manufactured switchboards that are available and acceptable to Detroit Edison. In determining acceptability of these units, Detroit Edison does not make an overall evaluation of the unit or assume ultimate responsibility for its selection. This list is provided as a convenience for the customer to indicate units that have been inspected and used in the Detroit Edison Service Area. Other makes of equipment are not excluded; however, any equipment not listed must have its specifications submitted to the Detroit Edison Planner for review and acceptance prior to installation.

The manufacturers listed below have submitted drawings of switchboard construction that have been accepted by Detroit Edison. The contractor must submit approval drawings showing a one-line diagram and the equipment layout. The Detroit Edison drawing numbers must be referenced when showing current transformer compartment construction. New switchboard installations must always be inspected for compliance with minimum sealing and spacing requirements as shown in Section 5.

The following switchboards have been accepted for use in the Detroit Edison Service Area. Manufacturers desiring to have their equipment listed may contact Detroit Edison Meter Engineering at 313.389.7711.

(a) Challenger
(b) Eaton (Cutler-Hammer)
(c) Electrical Power Products
(d) General Electric
(e) Park Metal Products
(f) Siemens
(g) Square D
(h) Salinger Electric Co.
(i) Continental Electrical Products
Switchboard Inspection Routine

Address ___________________________ Bldg ____ Fl ____ Apt/Rm ____ City/Town __________
Customer __ Contractor __________________
Planner __ Telephone _________________________
Remarks __ _____________________________

Inspector __ Date Inspected _________________
Remarks __ _____________________________

1. Address marked on stationary portion of meter enclosure.......................... ___ Yes ___ No
2. Meter enclosure within sight from CT compartment................................. ___ Yes ___ No
3. Safe and permanent access to metering equipment................................. ___ Yes ___ No
4. Working clearances in front of meter enclosure and CT compartment:
 min. 30" wide by 36" deep (min. 30" wide by 48" deep for 480 V)............... ___ Yes ___ No
5. Workspace permits at least a 90° opening of CT compartment door(s)........ ___ Yes ___ No
6. Access clearances to meter enclosure and switchboard:
 min. 24" wide by 6' 6" high and clear of obstructions ___ Yes ___ No
7. Grounding electrode conductor installed and connected to
 Grounding Electrode System (NEC).. ___ Yes ___ No
8. Barriers in CT compartment separating metering area from adjacent areas .. ___ Yes ___ No
Switchboard Inspection Routine

Page 2 of 3

9. 400-1000 amp swbd CT comp. min. 21" wide by 10" deep ___N/A* ___Yes ___No

10. 1200-3000 amp swbd CT comp. min. 28" wide by 12" deep ___N/A* ___Yes ___No

11. CT compartment door(s) min. 27-1/2" high, max. 36" wide ___Yes ___No

12. Verify bus bar dimensions and spacing with template: .. ___Yes ___No
 (min. 1/4" thick; min. 3" wide, max. 5" wide)

13. Number of bus bars per phase ...No. ______

14. Area between line and load bus bars is free of conductors entering or passing through (free space must be clear for current transformers) ___Yes ___No

15. One conductor of each phase and one neutral in each Switchboard line side conduit, when conduit fed .. ___Yes ___No
 A separate grounding conductor (green wire) should not be installed in the service conduits.

16. Neutral bus brought forward through barrier into CT compartment and tapped for 10-32 round head screw (provided) ... ___Yes ___No

17. Double hasp on CT compartment door(s) for sealing ___Yes ___No

18. Swbd panels sealable at opposite corners or secured with carriage bolts ___Yes ___No

19. Line conductors identified in CT compartment ..___Yes ___No

20. Power leg at center bus position ... ___N/A* ___Yes ___No

21. Any backfeed on line or load conductors ... ___No check ___Yes ___No

22. Service entrance conduit type ___Metallic ___PVC (electrical) ___Pre-fab. Bus

23. Service conduit properly sized and supported ... ___N/A* ___Yes ___No

24. Weatherhead min. 6 inches above attachment point ___N/A* ___Yes ___No

* N/A* Not Applicable
Switchboard Inspection Routine

Page 3 of 3

25. Bus bar min. 18 inches below attachment point (30" preferred)... ___N/A* ___Yes ___No

26. Service conductors extend min. 24" from weatherhead.................. ___N/A* ___Yes ___No

27. Service entrance conductors or bus bars identified................................... ___Yes ___No

28. Point of attachment to finished grade minimums met ___N/A* ___Yes ___No
 Residential -- drip loop-10', driveway-12', street-18', hwy-22'
 Commercial -- drip loop-12', bus-15', vehicular traffic-18', hwy-22'

29. Correct meter enclosure installed (CT-rated)................................. ___Yes ___No

30. Inspect meter enclosure for sealing hasp, openings sealed, block cond., etc. Yes No

31. Meter enclosure securely fastened with sides and face vertically plumb...... ___Yes ___No

32. Meter enclosure height max. 6' to top, min. 3' 6" to center of meter face...... ___Yes ___No

33. Meter enclosure min. 1-foot horizontal clearance from inside corner........ ___Yes ___No

34. The edge of any metal or PVC terminal adapter, connector, or nipple entering meter box or switchboard is covered with a nonmetallic bushing... ___Yes ___No

35. Meter conduit enters meter enclosure at approved location................... ___Yes ___No

36. Meter conduit from CT compartment min. 1-1/4 inch metal....... ___N/A* ___Yes ___No
 (EMT, IMC, or RMC) PVC conduit is acceptable only for that portion passing through switchboard (See 5-6-4)

37. Meter conduit length: max. 20 feet ... ___N/A* ___Yes ___No
 min. 3 inches for switchboards 12 inches or less in depth
 min. 10 inches for switchboards over 12 inches in depth

38. Meter enclosure on CT compartment door: ___N/A* ___Yes ___No
 (min. 1-1/4 inch chase nipple and door made nonremovable)

39. NO L.B. use allowed with LINE side (unmetered) conductors. ALL conduits MUST BE INACCESSIBLE up to the metering equipment. All fittings must conform with 2014 NEC 344.42 and 314.15.

 N/A* Not Applicable
ROUTINES - LOAD PROFILE METERING INSTALLATIONS for
Large General Service Rate – 100KW Minimum Billing Demand Option,
Rider 1.1 – Metal Melting Rate, and Rider 1.2 – Process Heat Rate

GENERAL

This section covers metering requirements for:

- Large General Service customers who request the 100KW Minimum Demand Billing Option.
- Secondary customers who request and qualify for Rider 1.1 or 1.2 – Metal Melting rate or Process Heat rate.

The metering requirements for these groups vary slightly. For the Large General Service customer, the existing meter will be replaced with a meter equipped with Load Profile recording capabilities. Secondary customers requesting Metal Melting or Process Heat metering require at least one additional meter with Load Profile recording capabilities to monitor the process circuit. Preferably, the additional meter(s) should be mounted within eight feet of the existing meter. If this cannot be accomplished, a second metering location is permissible and the installation must be installed according to the following referenced requirements:

<table>
<thead>
<tr>
<th>DISCriPTION</th>
<th>PAGE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter Enclosure Installation</td>
<td>5-3-1</td>
<td>THROUGH</td>
</tr>
<tr>
<td>Outdoor Trough Installation</td>
<td>5-3-21</td>
<td>5-3-3</td>
</tr>
<tr>
<td>CT Cabinets</td>
<td>5-4-1</td>
<td>THROUGH</td>
</tr>
<tr>
<td>Switch Boards</td>
<td>5-6-1</td>
<td>THROUGH</td>
</tr>
</tbody>
</table>

Page numbers are referenced to this manual.
Some additional requirements are mentioned in this section.

NOTE: The following paragraph contains the routine pertaining to these installations.

All requests for these services must be referred to a Major Account Representative, who is responsible for identifying the qualifying loads and securing the necessary service agreement. The Major Account Representative, along with the customer, will select a suitable area for the metering equipment and will advise of the customer’s responsibilities. Any service increase or relocation of equipment other than the meter enclosure, must involve the Service Planner who participates in the final selection of service equipment location. Service Planning will then coordinate any work required for the service increase or the service equipment relocation. The Major Account Representative will coordinate all metering equipment. Meter Engineering may assist the Major Account Representative where necessary.

A suitable outdoor location is preferred for the installation of the metering equipment. This metering location must be readily accessible. Access and working space must comply with 2005 NEC 110-26, Spaces About Electrical Equipment.
Installation Routine: (for all Current Transformer – Rated Secondary Installations).

A. The customer shall:

1. Install socket based enclosures on all installations.

2. Install meter enclosures at a suitable outdoor location.

3. Existing inside meter enclosures installed on C.T. Cabinet doors or Switchboard Cabinets must be upgraded to meet all applicable requirements of item # 4 below.

4. All meter locations must meet the following conditions:

 I. If the existing meter on the process Heat or Metal Melting rate is an “A” or “B” base meter, the customer’s contractor shall install two “S” base meter enclosures outdoors.

 II. Provide special circuits for metering the qualifying loads. These special circuits must include neutral and all voltage conductors. Additional meter enclosures should be mounted within 8 feet of existing meters.

 III. If CT Cabinet is required, install the cabinet so that no more than 20 feet of 1- 1/4″ conduit is required for CT secondary wires.

 IV. Install 3/4″ metal raceway conduit (liquid-tight or flexible) from the meter enclosure to the AC-10 box as shown on page 5-7-4.

 V. Keep the area clear for easy, safe access for Detroit Edison personnel to read the meters, and test the meters. Working clearance guidelines 2005 NEC 110-26, Spaces About Electrical Equipment.

B. Electrical Field Operations (EFO) service personnel will:

1. Replace the existing meter with a Load Profile meter. Install a Load Profile meter on the Process Heat and Metal Melting rate circuit.

Any questions regarding these routines can be directed to Meter Engineering at 313-389-7711.
SECONDARY CUSTOMER PROCESS HEAT

INSTALLED 18" WIDE X 24" HIGH X 3/4" PLYWOOD MOUNTING BOARD ANYWHERE IN THIS AREA.

3/4" METAL CONDUIT TO METER BOX

3/4" METAL CONDUIT

CURRENT TRANSFORMER CABINET

CURRENT TRANSFORMER CABINET

GENERAL SERVICE

PROCESS HEAT

6" MAXIMUM

3" MINIMUM

FLOOR

TYPICAL EQUIPMENT ASSEMBLIES

SIDE BY SIDE INSTALLATION

TO CURRENT TRANSFORMER CABINET - SEE NOTE 1

ADJACENT INSTALLATION

18" 24"

18"

24"

8" MAX LENGTH BETWEEN METER & RECORDER

RECORDER

METERS

CORNER INSTALLATION

NOTES

1. INSTALL THE CT CABINET SO THAT NO MORE THAN 20 FEET OF 1 1/4" METAL CONDUIT IS REQUIRED FOR CT SECONDARY WIRES FOR EACH METER.

2. KEEP AREA CLEAR FOR SAFE ACCESS FOR DETROIT EDISON PERSONNEL TO READ THE METERS, CHANGE THE TAPE, AND TEST THE METERS.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
LARGE GENERAL SERVICE RATE
100 KW MINIMUM BILLING DEMAND OPTION

CL20, CT RATED

6' MAX

42" MIN

1-1/4" METAL CONDUIT

FLOOR

CURRENT TRANSFORMER SECTION OF THE SWITCHBOARD OR CT CABINET

3" MIN. WITH SWITCHBOARDS
12" OR LESS IN DEPTH
10" MIN. WITH SWITCHBOARDS
OVER 12" IN DEPTH
TO EXCEED SIX (6)

NOTES:
1. THE 1-1/4" METAL CONDUIT FOR METER WIRES MAY ENTER TOP, BOTTOM, OR SIDES OF METER ENCLOSURE, BUT SHALL NOT INTERFERE WITH BYPASS HANDLE OR TEST SWITCHES.
2. DECO WILL INSTALL A SPECIAL METER WHICH WILL INCLUDE A BUILT IN LOAD PROFILE RECORDER.
3. CONTACT CUSTOMER SERVICE ENGINEERING AND ALLOW EIGHT WEEKS FOR METER.

THE DETROIT EDISON COMPANY ASSUMES NO RESPONSIBILITY FOR INJURY OR DAMAGE ARISING FROM THE USE OF THIS SPECIFICATION DIAGRAM.
CUTLER-HAMMER – MULTIPLE METER EQUIPMENT
ACCEPTABLE FOR DECo. METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER’S CATALOG

<table>
<thead>
<tr>
<th>AMPERES</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUTDOOR ①②</td>
<td>OUTDOOR ①②</td>
</tr>
</tbody>
</table>

Main Circuit Breaker

<table>
<thead>
<tr>
<th>AMPERES</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>1MCB400R</td>
<td>3MCB400R</td>
</tr>
<tr>
<td>600</td>
<td>1MCB600R</td>
<td>3MCB600R</td>
</tr>
<tr>
<td>800</td>
<td>1MCB800R</td>
<td>3MCB800R</td>
</tr>
<tr>
<td>1000</td>
<td>1MCB1000R</td>
<td>3MCB1000R</td>
</tr>
<tr>
<td>1200</td>
<td>1MCB1200R③</td>
<td>3MCB1200R③</td>
</tr>
<tr>
<td>1600</td>
<td>1MCB1600RBC③</td>
<td>3MCB1600RBC③</td>
</tr>
</tbody>
</table>

Main Terminal Box

<table>
<thead>
<tr>
<th>AMPERES</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>3MTB400R</td>
<td>3MTB400R</td>
</tr>
<tr>
<td>600</td>
<td>3MTB600R</td>
<td>3MTB600R</td>
</tr>
<tr>
<td>800</td>
<td>1MTB800R</td>
<td>3MTB800R</td>
</tr>
<tr>
<td>1200</td>
<td>1MTB1200R③</td>
<td>3MTB1200R③</td>
</tr>
<tr>
<td>1600</td>
<td>1MTB1600RBC③</td>
<td>3MTB1600RBC③</td>
</tr>
</tbody>
</table>

Main Fusible Switch

<table>
<thead>
<tr>
<th>AMPERES</th>
<th>FEED</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Bottom</td>
<td>1MFS400RB</td>
<td>3MFS400RB</td>
</tr>
<tr>
<td>400</td>
<td>Top</td>
<td>1MFS400RT</td>
<td>3MFS400RT</td>
</tr>
<tr>
<td>600</td>
<td>Bottom</td>
<td>1MFS600RB</td>
<td>3MFS600RB</td>
</tr>
<tr>
<td>600</td>
<td>Top</td>
<td>1MFS600RT</td>
<td>3MFS600RT</td>
</tr>
<tr>
<td>800</td>
<td>Bottom</td>
<td>1MFS800RB</td>
<td>3MFS800RB</td>
</tr>
<tr>
<td>800</td>
<td>Top</td>
<td>1MFS800RT</td>
<td>3MFS800RT</td>
</tr>
<tr>
<td>1200</td>
<td>Bottom</td>
<td>1MFS1200RB③</td>
<td>3MFS1200RB③</td>
</tr>
</tbody>
</table>

Main Bolted Pressure Contact Switch

<table>
<thead>
<tr>
<th>AMPERES</th>
<th>FEED</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>Bottom</td>
<td>-</td>
<td>3BPS1600RB</td>
</tr>
<tr>
<td>1600</td>
<td>Top</td>
<td>-</td>
<td>3BPS1600RT</td>
</tr>
</tbody>
</table>

NOTES:
①Units are designed for bottom feed. If used for top feed, live bus must have a protective barrier from the LINE cable.
②Add “C” to end of catalog number for COPPER BUS.
③1200A or greater, main devices must be center fed when installing 800A residential meter stacks.

• NEMA type 3R construction
CUTLER-HAMMER – MULTIPLE METER EQUIPMENT
ACCEPTABLE FOR DTE ELECTRIC CO. METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER’S CATALOG

Single Phase Meter Stack Modules

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>SINGLE PHASE IN</th>
<th>THREE PHASE IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ø 3W</td>
<td>125</td>
<td>2</td>
<td>use 3-Phase</td>
<td>3MM212R</td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>3</td>
<td>1</td>
<td>1MM312R</td>
<td></td>
</tr>
<tr>
<td>4 JAW</td>
<td>4</td>
<td>5</td>
<td>1MM412R</td>
<td></td>
</tr>
<tr>
<td>5 JAW</td>
<td>6</td>
<td>1</td>
<td>1MM512R</td>
<td></td>
</tr>
<tr>
<td>3Ø 4W</td>
<td>125</td>
<td>2</td>
<td>3MM212R</td>
<td></td>
</tr>
<tr>
<td>120/208 Volt</td>
<td>3</td>
<td>1</td>
<td>3MM312R</td>
<td></td>
</tr>
<tr>
<td>5 JAW</td>
<td>4</td>
<td>5</td>
<td>3MM412R</td>
<td></td>
</tr>
<tr>
<td>3-PHASE IN</td>
<td>6</td>
<td>1</td>
<td>3MM512R</td>
<td></td>
</tr>
<tr>
<td>1-PHASE OUT</td>
<td></td>
<td></td>
<td>3MM612R</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>SINGLE PHASE IN</th>
<th>THREE PHASE IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ø 3W</td>
<td>200</td>
<td>2</td>
<td>use 3-Phase</td>
<td>3MM220R</td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>3</td>
<td>1</td>
<td>1MM320R</td>
<td></td>
</tr>
<tr>
<td>4 JAW</td>
<td>4</td>
<td>5</td>
<td>1MM420R</td>
<td></td>
</tr>
<tr>
<td>5 JAW</td>
<td>6</td>
<td>1</td>
<td>1MM520R</td>
<td></td>
</tr>
<tr>
<td>3Ø 4W</td>
<td>200</td>
<td>2</td>
<td>3MM220R</td>
<td></td>
</tr>
<tr>
<td>120/208 Volt</td>
<td>3</td>
<td>1</td>
<td>3MM320R</td>
<td></td>
</tr>
<tr>
<td>5 JAW</td>
<td>4</td>
<td>5</td>
<td>3MM420R</td>
<td></td>
</tr>
<tr>
<td>3-PHASE IN</td>
<td>6</td>
<td>1</td>
<td>3MM520R</td>
<td></td>
</tr>
<tr>
<td>1-PHASE OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DTE Electric Co. Requirements. (See page 5-3-11)
5. Ring Style Meter Socket Covers. Order SCREW-TYPE sealing rings.
6. Add “C” to end of catalog number for COPPER BUS.
7. On a 120/208 Volt service, all modules are shipped with phase A-B connected. The stacks are readily connectable across phase A-C and phase B-C. The load must be balanced by the contractor.

- NEMA type 3R construction
Single Phase Meter Packs

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ø 3W 120/240 Volt 4 JAW</td>
<td>125</td>
<td>2</td>
<td>1MP2122R</td>
</tr>
<tr>
<td>1Ø 3W 120/240 Volt 4 JAW</td>
<td>200</td>
<td>2</td>
<td>1MP2204R</td>
</tr>
</tbody>
</table>

NOTES:

1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DECo. Requirements. (See page 5-3-11)
5. Ring Style Meter Socket Covers. Order SCREW-TYPE sealing rings.
6. Add “C” to end of catalog number for COPPER BUS.
7. The fifth jaw must be ordered for all metering fed by 120/208 volt 3 phase.

- **NEMA type 3R construction**
CUTLER-HAMMER – MULTIPLE METER EQUIPMENT
ACCEPTABLE FOR DECo. METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER’S CATALOG

THREE PHASE METER STACK MODULES

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET TYPE</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Ø 4W</td>
<td>225 Ampere</td>
<td>2</td>
<td>37MM202R12</td>
</tr>
<tr>
<td>120/208, 120/240** Volt</td>
<td>Note 1</td>
<td>3</td>
<td>37MM320R12</td>
</tr>
<tr>
<td>7 JAW</td>
<td>37MM320R12</td>
<td>4</td>
<td>37MM420R12</td>
</tr>
<tr>
<td>3 POLE BRANCH (3 PHASE METERING)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- NEMA type 3R construction
- Ringless type with lever bypass and jaw release
- 225 Amp maximum Branch Main

**120/240V Service IN (B-Phase is High Leg) - Meter Socket MUST have High (Power) Leg on Right

NOTES:
1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DECo. Requirements. (See page 5-3-11)
5. Ringless Style Meter Socket Covers.
Service Equipment

Siemens – ITE Modules

Acceptable for DTE Electric Metering

Dimensions are available for planning through manufacturer’s catalog

<table>
<thead>
<tr>
<th>Circuit Breaker Module</th>
<th>②</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPERES</td>
<td>SINGLE PHASE OUTDOOR</td>
</tr>
<tr>
<td>400</td>
<td>WB1400CU</td>
</tr>
<tr>
<td>600</td>
<td>WB1600CU</td>
</tr>
<tr>
<td>800</td>
<td>WB1800CU</td>
</tr>
<tr>
<td>1000</td>
<td>WB11000CU</td>
</tr>
<tr>
<td>1200</td>
<td>WB11200CU</td>
</tr>
<tr>
<td>1600</td>
<td>WB11600CU</td>
</tr>
</tbody>
</table>

Tap Box Module		

AMPERES	**SINGLE PHASE OUTDOOR**	**THREE PHASE OUTDOOR**
800	WTB1800CU	WTB3800CU
1200	WTB11200CU	WTB31200CU
1600	WTB11600CU	WTB31600CU

<table>
<thead>
<tr>
<th>Fusible Switch Module</th>
<th>①</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPERES</td>
<td>SINGLE PHASE OUTDOOR</td>
</tr>
<tr>
<td>400</td>
<td>WS1400CU</td>
</tr>
<tr>
<td>600</td>
<td>WS1600CU</td>
</tr>
<tr>
<td>800</td>
<td>WS1800CU</td>
</tr>
<tr>
<td>1200</td>
<td>WS11200BU</td>
</tr>
</tbody>
</table>

Notes:

1. An optional Surge Protection module is allowed. The catalog number is WSPDxxxxx.
2. An optional Arcflash Reduction Maintenance System is allowed. The catalog number is WBMxxxxx.

- NEMA type 3R construction
SINGLE PHASE METER STACKS

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS OUTDOOR SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ø 3W 120/240 Volt 4 JAW</td>
<td>125</td>
<td>2</td>
<td>WMM21125</td>
<td></td>
</tr>
<tr>
<td>3Ø 4W 120/208 Volt 5 JAW</td>
<td>125</td>
<td>2</td>
<td>WMM22125J</td>
<td></td>
</tr>
<tr>
<td>1Ø 3W 120/240 Volt 4 JAW</td>
<td>200</td>
<td>2</td>
<td>WMM21225</td>
<td></td>
</tr>
<tr>
<td>3Ø 4W 120/208 Volt 5 JAW</td>
<td>200</td>
<td>2</td>
<td>WMM22225J</td>
<td></td>
</tr>
<tr>
<td>1Ø 3W 120/240 Volt 4 JAW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ø 4W 120/208 Volt 5 JAW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DECo. Requirements. (See page 5-3-11)
5. Ring Style Meter Socket Covers. Order SCREW-TYPE sealing rings.

- NEMA type 3R construction
SIEMENS – ITE MODULES
ACCEPTABLE FOR DTE METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER'S CATALOG

METER UNI-PAKS

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ø 3W</td>
<td>125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>120/240 Volt</td>
<td></td>
<td></td>
<td>WP2211</td>
</tr>
<tr>
<td>4 JAW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ø 4W</td>
<td>125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>120/208 Volt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 JAW</td>
<td></td>
<td></td>
<td>WP3311</td>
</tr>
<tr>
<td>3-PHASE IN</td>
<td></td>
<td></td>
<td>WP4411</td>
</tr>
<tr>
<td>1-PHASE OUT</td>
<td></td>
<td></td>
<td>WP4511</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WP4611</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WP5611</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WP6611</td>
</tr>
<tr>
<td>1Ø 3W</td>
<td>200</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>120/240 Volt</td>
<td></td>
<td></td>
<td>WP4212</td>
</tr>
<tr>
<td>4 JAW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ø 4W</td>
<td>200</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>120/208 Volt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 JAW</td>
<td></td>
<td></td>
<td>WP4312</td>
</tr>
<tr>
<td>3-PHASE IN</td>
<td></td>
<td></td>
<td>WP4412</td>
</tr>
<tr>
<td>1-PHASE OUT</td>
<td></td>
<td></td>
<td>WP6412</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WP6512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WP6612</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WP8612</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WP10612</td>
</tr>
</tbody>
</table>

NOTES:
1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DECo. Requirements. (See page 5-3-11)
5. Ring Style Meter Socket Covers. Order SCREW-TYPE sealing rings.
 • NEMA type 3R construction
SIEMENS – ITE MODULES
ACCEPTABLE FOR DECo. METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER’S CATALOG

THREE PHASE METER MODULES

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITION</th>
<th>CATALOG NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Ø 4W 120/208, 120/240 Volt 7 JAW 3 POLE BRANCH (3 PHASE METERING)</td>
<td>225</td>
<td>1</td>
<td>WML13225RJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>WML23225RJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>WML33225RJ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>WML43225RJ</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td></td>
<td>WML13100RJ</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>WML23100RJ</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>WML33100RJ</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>WML43100RJ</td>
</tr>
</tbody>
</table>

3-PHASE IN
3-PHASE OUT

- NEMA type 3R construction
- Ringless type with lever bypass and jaw release
- 200 Amp maximum Branch Main

NOTES:
1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DECo. Requirements. (See page 5-3-11)
5. Ringless Style Meter Socket Covers.
TALON
ACCEPTABLE FOR DTE METERING
DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER'S CATALOG

METER UNI-PAKS

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS OUTDOOR</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ø 3W 125</td>
<td>2</td>
<td>WTG2211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>3</td>
<td>WTG3311</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 JAW</td>
<td>4</td>
<td>WTG4411</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>WTG4511</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG4611</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>WTG6411</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>WTG6511</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG6611</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ø 4W 125</td>
<td>2</td>
<td>WTG2211*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/208 Volt</td>
<td>3</td>
<td>WTG3311*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 JAW*</td>
<td>4</td>
<td>WTG4411*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-PHASE IN</td>
<td>5</td>
<td>WTG4511*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-PHASE OUT</td>
<td>6</td>
<td>WTG4611*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>WTG6411*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>WTG6511*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG6611*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Ø 3W 200</td>
<td>2</td>
<td>WTG4212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>3</td>
<td>WTG4312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 JAW</td>
<td>4</td>
<td>WTG4412</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>WTG6412</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG6512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG6612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG8612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG10612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Ø 4W 200</td>
<td>2</td>
<td>WTG4212*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/208 Volt</td>
<td>3</td>
<td>WTG4312*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 JAW*</td>
<td>4</td>
<td>WTG4412*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-PHASE IN</td>
<td>4</td>
<td>WTG6412*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-PHASE OUT</td>
<td>5</td>
<td>WTG6512*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG6612*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG8612*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>WTG10612*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DTE Requirements. (See page 5-3-11)
5. Ring Style Meter Socket Covers. Order SCREW-TYPE sealing rings.
6. * - Required 5th Jaw Kit, order Cat # ECMF5 (un-insulated) or ECMF5i (insulated).

- NEMA type 3R construction
SQUARE D MULTIPLE METERING EQUIPMENT
ACCEPTABLE FOR DECo. METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER'S CATALOG

<table>
<thead>
<tr>
<th>METER PAKS</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS</th>
<th>SERVICE AMPERE METER OUTDOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ø 3W</td>
<td>125</td>
<td>2</td>
<td>EZM112125</td>
<td>EZM112225</td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>3</td>
<td>3</td>
<td>EZM113125</td>
<td>EZM113225</td>
</tr>
<tr>
<td>4 JAW</td>
<td>4</td>
<td>4</td>
<td>EZM114125</td>
<td>EZM114225</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>EZM115125</td>
<td>EZM115225</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>EZM116125</td>
<td>EZM116225</td>
</tr>
<tr>
<td>3Ø 4W</td>
<td>125</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/208 Volt</td>
<td>3</td>
<td>3</td>
<td>EZM312125</td>
<td>EZM312225</td>
</tr>
<tr>
<td>5 JAW</td>
<td>4</td>
<td>4</td>
<td>EZM314125</td>
<td>EZM314225</td>
</tr>
<tr>
<td>3-PHASE IN</td>
<td>5</td>
<td>5</td>
<td>EZM315125</td>
<td>EZM315225</td>
</tr>
<tr>
<td>1-PHASE OUT</td>
<td>6</td>
<td>6</td>
<td>EZM316125</td>
<td>EZM316225</td>
</tr>
<tr>
<td>1Ø 3W</td>
<td>225</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>3</td>
<td>3</td>
<td>EZM113225</td>
<td>EZM113325</td>
</tr>
<tr>
<td>4 JAW</td>
<td>4</td>
<td>4</td>
<td>EZM114225</td>
<td>EZM114325</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>EZM115225</td>
<td>EZM115325</td>
</tr>
<tr>
<td>3Ø 4W</td>
<td>225</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/208 Volt</td>
<td>3</td>
<td>3</td>
<td>EZM313225</td>
<td>EZM313325</td>
</tr>
<tr>
<td>5 JAW</td>
<td>4</td>
<td>4</td>
<td>EZM314225</td>
<td>EZM314325</td>
</tr>
<tr>
<td>3-PHASE IN</td>
<td>5</td>
<td>5</td>
<td>EZM315225</td>
<td>EZM315325</td>
</tr>
<tr>
<td>1-PHASE OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SQUARE D MULTIPLE METERING EQUIPMENT
ACCEPTABLE FOR DECo. METERING

3Ø 4W	225	2	EZM322225
120/208 Volt	3	3	EZM332225
120/240 Volt	4	4	EZM334225
7 JAW			NEMA type 3R construction
3-PHASE IN			Ringless type with lever bypass and jaw release
3-PHASE OUT			200 Amp maximum Branch Main

NOTES:
1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DECo. Requirements. (See page 5-3-11)
5. Ring Style Meter Socket Covers. Order SCREW-TYPE sealing rings.
6. Ringless type with lever bypass and jaw release.

SIM-ESIG: 5-8
SQUARE D MULTIPLE METERING EQUIPMENT
ACCEPTABLE FOR DECo. METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER'S CATALOG

EZ METER PAKS

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>MAIN AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ø 3W 120/240 Volt 4 JAW</td>
<td>125</td>
<td>200</td>
<td>2</td>
<td>MP22125</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>3</td>
<td>MP33125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>4</td>
<td>MP44125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>5</td>
<td>MP55125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>6</td>
<td>MP66125</td>
<td></td>
</tr>
<tr>
<td>1Ø 3W 120/240 Volt 4 JAW</td>
<td>200</td>
<td>400</td>
<td>2</td>
<td>MP42200</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>3</td>
<td>MP43200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>4</td>
<td>MP64200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>5</td>
<td>MP85200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>6</td>
<td>MP86200</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DECo. Requirements. (See page 5-3-11)
5. Ring Style Meter Socket Covers. Order SCREW-TYPE sealing rings.

- NEMA type 3R construction
Main Breaker

<table>
<thead>
<tr>
<th>AMPERE RATING</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUTDOOR</td>
<td>OUTDOOR</td>
</tr>
<tr>
<td>400</td>
<td>EZM1400CB</td>
<td>EZM3400CB</td>
</tr>
<tr>
<td>600</td>
<td>EZM1600CB</td>
<td>EZM3600CB</td>
</tr>
<tr>
<td>800</td>
<td>EZM1800CB</td>
<td>EZM3800CB</td>
</tr>
<tr>
<td>1000</td>
<td>EZM11000CB</td>
<td>EZM31000CB</td>
</tr>
<tr>
<td>1200</td>
<td>EZM11200CB</td>
<td>EZM31200CB</td>
</tr>
<tr>
<td>1600</td>
<td>EZM11600CB</td>
<td>EZM31600CB</td>
</tr>
</tbody>
</table>

Tap Box

<table>
<thead>
<tr>
<th>AMPERE RATING</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUTDOOR</td>
<td>OUTDOOR</td>
</tr>
<tr>
<td>400</td>
<td>EZM1400TB</td>
<td>EZM3400TB</td>
</tr>
<tr>
<td>600</td>
<td>EZM1600TB</td>
<td>EZM3600TB</td>
</tr>
<tr>
<td>800</td>
<td>EZM1800TB</td>
<td>EZM3800TB</td>
</tr>
<tr>
<td>1600</td>
<td>EZM11600TB</td>
<td>EZM31600TB</td>
</tr>
</tbody>
</table>

Fusible Switch

<table>
<thead>
<tr>
<th>AMPERE RATING</th>
<th>SINGLE PHASE</th>
<th>THREE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OUTDOOR</td>
<td>OUTDOOR</td>
</tr>
<tr>
<td>400</td>
<td>EZM1400FS</td>
<td>EZM3400FS</td>
</tr>
<tr>
<td>600</td>
<td>EZM1600FS</td>
<td>EZM3600FS</td>
</tr>
<tr>
<td>800</td>
<td>EZM1800FS</td>
<td>EZM3800FS</td>
</tr>
<tr>
<td>1200</td>
<td>EZM11200FS</td>
<td>------------</td>
</tr>
</tbody>
</table>

NOTES:
1. Consult manufacturer for information regarding fault current rating.
2. Follow the manufacturer's instruction for assembly.
3. Mounting heights must conform to DECo. requirements. (See page 5-3-11)
4. On 120/208 Volt service, see meter stack table for proper equipment order.

- **NEMA type 3R construction**
MURRAY (SIEMENS) ELECTRICAL PRODUCTS
ACCEPTABLE FOR DTE ELECTRIC METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER’S CATALOG

METER UNI-PAKS

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ø 3W</td>
<td>125</td>
<td>2</td>
<td>MP2211</td>
</tr>
<tr>
<td>120/240 Volt</td>
<td></td>
<td>3</td>
<td>MP3311</td>
</tr>
<tr>
<td>4 JAW</td>
<td></td>
<td>4</td>
<td>MP4411</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>MP4511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>MP4611</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>MP6511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>MP6611</td>
</tr>
<tr>
<td>1Ø 3W</td>
<td>200</td>
<td>2</td>
<td>MP4212</td>
</tr>
<tr>
<td>120/240 Volt</td>
<td></td>
<td>3</td>
<td>MP4312</td>
</tr>
<tr>
<td>4 JAW</td>
<td></td>
<td>4</td>
<td>MP4412</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>MP6412</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>MP6512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>MP6612</td>
</tr>
</tbody>
</table>

NOTES:
1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DTE Requirements. (See page 5-3-11)
5. Ring Style Meter Socket Covers. Order SCREW-TYPE sealing rings.
6. Ringless and 5th Jaw included enclosure order; add RJ in catalog number as WPxxxxRJ.

- **NEMA type 3R construction**
MURRAY ELECTRICAL PRODUCTS
ACCEPTABLE FOR DECo. METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER’S CATALOG

Circuit Breaker Module

<table>
<thead>
<tr>
<th>AMPERES</th>
<th>SINGLE PHASE OUTDOOR</th>
<th>THREE PHASE OUTDOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>DB042W</td>
<td>DB043W</td>
</tr>
<tr>
<td>600</td>
<td>DB062W</td>
<td>DB063W</td>
</tr>
<tr>
<td>800</td>
<td>DB082W</td>
<td>DB083W</td>
</tr>
<tr>
<td>1000</td>
<td>DB102W</td>
<td>DB103W</td>
</tr>
<tr>
<td>1200</td>
<td>DB122W</td>
<td>DB123W</td>
</tr>
<tr>
<td>1600</td>
<td>n/a</td>
<td>DB163W</td>
</tr>
</tbody>
</table>

Tap Box Module

<table>
<thead>
<tr>
<th>AMPERES</th>
<th>SINGLE PHASE OUTDOOR</th>
<th>THREE PHASE OUTDOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>DTB082W</td>
<td>DTB083W</td>
</tr>
<tr>
<td>1200</td>
<td>DTB122W</td>
<td>DTB123W</td>
</tr>
<tr>
<td>1600</td>
<td>DTB163W</td>
<td></td>
</tr>
</tbody>
</table>

Fusible Switch Module

<table>
<thead>
<tr>
<th>AMPERES</th>
<th>SINGLE PHASE OUTDOOR</th>
<th>THREE PHASE OUTDOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>DT042W</td>
<td>DT043W</td>
</tr>
<tr>
<td>600</td>
<td>DT062W</td>
<td>DT063W</td>
</tr>
<tr>
<td>800</td>
<td>DT082W</td>
<td>DT083W</td>
</tr>
</tbody>
</table>

☐ Units are designed for top feed. Consult manufacturer if bottom fed installation.
☐ Units are top feed, invertible for bottom feed. (See manufacturer catalog for instructions).

- NEMA type 3R construction
GENERAL ELECTRIC (G.E.) FOR MULTIPLE METERING EQUIPMENT
ACCEPTABLE FOR DECo. METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER'S CATALOG

METER MOD III MODULAR METERING – MAIN MODULES

Main Breaker Modules (Top or Bottom Feed)

<table>
<thead>
<tr>
<th>DEVICE AMPERE RATING</th>
<th>SINGLE PHASE INDOOR/OUTDOOR</th>
<th>THREE PHASE INDOOR/OUTDOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 (42,000)</td>
<td>TMPSB4R</td>
<td>TMP3SB4R</td>
</tr>
<tr>
<td>400 (100,000)</td>
<td>TMPSHB4R</td>
<td>TMP3SHB4R</td>
</tr>
<tr>
<td>600 (42,000)</td>
<td>TMPSB6R</td>
<td>TMP3SB6R</td>
</tr>
<tr>
<td>600 (100,000)</td>
<td>TMPSHB6R</td>
<td>TMP3SHB6R</td>
</tr>
<tr>
<td>800 (65,000)</td>
<td>TMPSB8R</td>
<td>TMP3SB8R</td>
</tr>
<tr>
<td>1000 (65,000)</td>
<td>TMPSB10R</td>
<td>TMP3SB10R</td>
</tr>
<tr>
<td>1200 (65,000)</td>
<td>TMPSB12R</td>
<td>TMP3SB12R</td>
</tr>
</tbody>
</table>

Main Switch Modules (T-Fuses Not Included)

<table>
<thead>
<tr>
<th>DEVICE AMPERE RATING</th>
<th>FEED</th>
<th>SINGLE PHASE INDOOR/OUTDOOR</th>
<th>THREE PHASE INDOOR/OUTDOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>TOP</td>
<td>TMPFT4R</td>
<td>TMP3FT4R</td>
</tr>
<tr>
<td>400</td>
<td>BOTTOM</td>
<td>TMPFB4R</td>
<td>TMP3FB4R</td>
</tr>
<tr>
<td>600</td>
<td>TOP</td>
<td>TMPFT6R</td>
<td>TMP3FT6R</td>
</tr>
<tr>
<td>600</td>
<td>BOTTOM</td>
<td>TMPFB6R</td>
<td>TMP3FB6R</td>
</tr>
<tr>
<td>800</td>
<td>TOP</td>
<td>TMPFT8R</td>
<td>TMP3FT8R</td>
</tr>
<tr>
<td>800</td>
<td>BOTTOM</td>
<td>TMPFB8R</td>
<td>TMP3FB8R</td>
</tr>
</tbody>
</table>

Main Lug Modules (Top or Bottom Feed)

<table>
<thead>
<tr>
<th>DEVICE AMPERE RATING</th>
<th>SINGLE PHASE INDOOR/OUTDOOR</th>
<th>THREE PHASE INDOOR/OUTDOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>Use 3-PHASE</td>
<td>TMP3L4R</td>
</tr>
<tr>
<td>600</td>
<td>Use 3-PHASE</td>
<td>TMP3L6R</td>
</tr>
<tr>
<td>800</td>
<td>TMPL8R</td>
<td>TMP3L8R</td>
</tr>
<tr>
<td>1200</td>
<td>TMPL12R</td>
<td>TMP3L12R</td>
</tr>
</tbody>
</table>

NOTES:
1. Consult manufacturer for information regarding fault current rating.
2. Follow the manufacturer's instruction for assembly.
3. Mounting heights must conform to DECo. requirements. (See page 5-3-11)
4. On 120/208 Volt service, balance phase loading by selecting proper phase connectors.

- **NEMA type 3R construction**
GENERAL ELECTRIC (G.E.) FOR MULTIPLE METERING EQUIPMENT
ACCEPTABLE FOR DECo. METERING

DIMENSIONS ARE AVAILABLE FOR PLANNING THROUGH MANUFACTURER'S CATALOG

MINI MOD III MODULAR METERING

METER UNI-PAKS – SINGLE PHASE

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1∅ 3W</td>
<td>200A</td>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>Note 5</td>
<td>3</td>
<td>TMM4312R</td>
</tr>
<tr>
<td>4 JAW</td>
<td>600A</td>
<td>4</td>
<td>TMM4412R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>TMM6512R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>TMM6612R</td>
</tr>
<tr>
<td>1∅ 3W</td>
<td>600A</td>
<td>200</td>
<td>3</td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>Note 5</td>
<td>4</td>
<td>TMM6420R</td>
</tr>
<tr>
<td>4 JAW</td>
<td></td>
<td>5</td>
<td>TMM6520R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>TMM6620R</td>
</tr>
</tbody>
</table>

METER MODULES – SINGLE PHASE

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1∅ 3W</td>
<td>800A</td>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>Note 5</td>
<td>3</td>
<td>TMP8312R*</td>
</tr>
<tr>
<td>4 JAW</td>
<td></td>
<td>4</td>
<td>TMP8412R*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>TMP8512R*</td>
</tr>
<tr>
<td>3∅ 4W*</td>
<td></td>
<td>6</td>
<td>TMP8612R*</td>
</tr>
<tr>
<td>120/208 Volt</td>
<td>200</td>
<td>2</td>
<td>TMP8220R*</td>
</tr>
<tr>
<td>5 JAW*</td>
<td>Note 5</td>
<td>3</td>
<td>TMP8320R*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>TMP8420R*</td>
</tr>
</tbody>
</table>

* REQUIRED 5th JAW KIT

METER MODULES – THREE PHASE

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>METER SOCKET AMPERE RATING</th>
<th>VERTICAL METER POSITIONS</th>
<th>CATALOG NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3∅ 4W</td>
<td>1200A</td>
<td>225</td>
<td>2</td>
</tr>
<tr>
<td>120/208, 120/240 Volt</td>
<td>Note 6</td>
<td>3</td>
<td>TMPR312322R</td>
</tr>
<tr>
<td>7 JAW</td>
<td></td>
<td>4</td>
<td>TMPR312422R</td>
</tr>
</tbody>
</table>

- NEMA type 3R construction
- Ringless style with lever bypass and jaw release
- 225 Amp maximum Branch Main

NOTES:
1. Fault Rating is determined by circuit breaker rating. Circuit breakers are ordered separately.
2. Consult manufacturer for information regarding fault current ratings.
3. Follow manufacturer’s instruction for assembly.
4. Mounting height must conform to DECo. Requirements. (See page 5-3-11)
5. Ring Style Meter Socket Covers. Order SCREW-TYPE sealing rings.
6. Ringless Style Meter Socket Covers.

- NEMA type 3R construction
ELECTRIC METER ENCLOSURES AND ACCESSORIES

APPROVED FOR USE IN THE DTE ELECTRIC SERVICE TERRITORY

All products must be UL labeled.

1 Phase, Ringless, 4 Terminals, 240V

<table>
<thead>
<tr>
<th>Enclosure Type</th>
<th>Manufacturer</th>
<th>Catalog No</th>
<th>Amps</th>
<th>Service Type</th>
<th>Discontinued on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Meter</td>
<td>Cooper B-line</td>
<td>EN12L43GRID (Note 8)</td>
<td>125</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Eaton</td>
<td>1006385B-CH (Note 8)</td>
<td>125</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Durham</td>
<td>1006385B (Note 8)</td>
<td>125</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Talon</td>
<td>UAT111-XG (Note 8)</td>
<td>125</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Midwest Electric Products</td>
<td>1006385B-MEP (Note 8)</td>
<td>125</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Milbank</td>
<td>U7487-O-TG (Note 8)</td>
<td>125</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Siemens</td>
<td>SUAT111-XG (Note 8)</td>
<td>125</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Square D</td>
<td>1006385B-SQD (Note 8)</td>
<td>125</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Cooper B-line</td>
<td>EN20L41GRID</td>
<td>200</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Eaton</td>
<td>1004709D-CH</td>
<td>200</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Durham</td>
<td>1004709D</td>
<td>200</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Talon</td>
<td>UAT317-0G (Note 2)</td>
<td>200</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Siemens</td>
<td>SUAT317-0G (Note 2)</td>
<td>200</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Midwest Electric Products</td>
<td>1004709D-MEP</td>
<td>200</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Milbank</td>
<td>U7021-RL-TG (Note 1)</td>
<td>200</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Square D</td>
<td>1004709D-SQD</td>
<td>200</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Cooper B-line</td>
<td>EN20L43GRID</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Eaton</td>
<td>UTRS213BE (AE or CE) (Note 1) (Note 7)</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Durham</td>
<td>1004710E (Note 3)</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Talon</td>
<td>UAT417-0G</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Talon</td>
<td>UAT417-XG</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Siemens</td>
<td>SUAT417-0G</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Siemens</td>
<td>SUAT417-XG</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Midwest Electric Products</td>
<td>1004710E-MEP (Note 3)</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Milbank</td>
<td>U7040-RL-TG (Note 1)</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Square D</td>
<td>1004710E-SQD (Note 3)</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
</tbody>
</table>

Discontinued Equipment, To Use Until Stock Is Depleted:

None

SIM-ESIG

SIM-ESIG: 5-8
1 Phase, Ringless, 4 Terminals, 240V, With Lever Bypass And Jaw Release

<table>
<thead>
<tr>
<th>Enclosure Type</th>
<th>Manufacturer</th>
<th>Catalog No</th>
<th>Amps</th>
<th>Service Type</th>
<th>Discontinued On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Meter</td>
<td>Eaton</td>
<td>1009788EA-CH (Note 3)(Note 6)</td>
<td>320</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Durham</td>
<td>1009788A (Note 3)</td>
<td>320</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Talon</td>
<td>48504-846</td>
<td>320</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Midwest Electric Products</td>
<td>1009788A-MEP (Note 3)</td>
<td>320</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Milbank</td>
<td>U1129-O-DTE</td>
<td>320</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Siemens</td>
<td>S48504-846</td>
<td>320</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Square D</td>
<td>1009788A-SQD (Note 3)</td>
<td>320</td>
<td>OH/UG</td>
<td></td>
</tr>
</tbody>
</table>

Discontinued Equipment, To Use Until Stock Is Depleted:

None
Enclosure Type

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Catalog No</th>
<th>Amps</th>
<th>Service Type</th>
<th>Discontinued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooper B-line</td>
<td>EL20L43GRST</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Eaton</td>
<td>1009995E-CH</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Durham</td>
<td>1009995</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Talon</td>
<td>40404-02QG</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Midwest Electric Products</td>
<td>1009995-MEP</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Milbank</td>
<td>U9801-RXL</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Siemens</td>
<td>S40404-02QG</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Square D</td>
<td>1009995-SQD</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
</tbody>
</table>

Discontinued Equipment, To Use Until Stock Is Depleted:

None

Enclosure Type

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Catalog No</th>
<th>Amps</th>
<th>Service Type</th>
<th>Discontinued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooper B-line</td>
<td>EL20L73GRST</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Eaton</td>
<td>U-E7213C-CH</td>
<td>200</td>
<td>OH/UG</td>
<td>(Note 4)</td>
</tr>
<tr>
<td>Durham</td>
<td>U-H7213C</td>
<td>200</td>
<td>OH/UG</td>
<td>(Note 4)</td>
</tr>
<tr>
<td>Talon</td>
<td>40407-025</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Midwest Electric Products</td>
<td>U-H7213C-MEP</td>
<td>200</td>
<td>OH/UG</td>
<td>(Note 4)</td>
</tr>
<tr>
<td>Milbank</td>
<td>U9701-RXL</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Siemens</td>
<td>S0407-025</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>Square D</td>
<td>U-H7213C-SQD</td>
<td>200</td>
<td>OH/UG</td>
<td>(Note 4)</td>
</tr>
</tbody>
</table>

Discontinued Equipment, To Use Until Stock Is Depleted:

None

Enclosure Type

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Catalog No</th>
<th>Amps</th>
<th>Service Type</th>
<th>Discontinued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milbank</td>
<td>U9551-RXL</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
</tbody>
</table>

Sim-ESIG: 5-8
<table>
<thead>
<tr>
<th>Enclosure Type</th>
<th>Manufacturer</th>
<th>Catalog No</th>
<th>Amps</th>
<th>Service Type</th>
<th>Discontinued on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Meter</td>
<td>Eaton</td>
<td>1007003C-CH</td>
<td>20</td>
<td>4 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Durham</td>
<td>1007003C</td>
<td>20</td>
<td>4 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Talon</td>
<td>9837-0907</td>
<td>20</td>
<td>4 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Meter Devices</td>
<td>602-3010A13-588</td>
<td>20</td>
<td>4 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Meter Devices</td>
<td>606-8015A-4 (Note 5) (Meter Enclosure only)</td>
<td>20</td>
<td>4 wire/ 3 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Meter Devices</td>
<td>607-8024A13-999 (Note 5) (pre-wired meter panel)</td>
<td>20</td>
<td>4 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Midwest Electric Products</td>
<td>1007003C-MEP</td>
<td>20</td>
<td>4 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Milbank</td>
<td>UC6473-O-21</td>
<td>20</td>
<td>4 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Square D</td>
<td>1007003C-SQD</td>
<td>20</td>
<td>4 wire</td>
<td></td>
</tr>
<tr>
<td>Discontinued Equipment, To Use Until Stock Is Depleted:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Milbank</td>
<td>UC7444-O-521</td>
<td>20</td>
<td>4 wire</td>
<td>3/31/2019</td>
</tr>
</tbody>
</table>

3 Phase 4Wire, Ringless, 120-480V, CT Rated with Test Switch wired per Detroit Edison specifications

<table>
<thead>
<tr>
<th>Enclosure Type</th>
<th>Manufacturer</th>
<th>Catalog No</th>
<th>Amps</th>
<th>Service Type</th>
<th>Discontinued on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Meter</td>
<td>Eaton</td>
<td>1007361C-CH</td>
<td>20</td>
<td>3 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Durham</td>
<td>1007361C</td>
<td>20</td>
<td>3 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Talon</td>
<td>9837-0908</td>
<td>20</td>
<td>3 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Meter Devices</td>
<td>602-3010A8-589</td>
<td>20</td>
<td>3 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Meter Devices</td>
<td>607-8024A8-1000 (Note 5) (pre-wired meter panel)</td>
<td>20</td>
<td>3 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Midwest Electric Products</td>
<td>1007361C-MEP</td>
<td>20</td>
<td>3 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Milbank</td>
<td>UC6472-O-21</td>
<td>20</td>
<td>3 wire</td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Square D</td>
<td>1007361C-SQD</td>
<td>20</td>
<td>3 wire</td>
<td></td>
</tr>
<tr>
<td>Discontinued Equipment, To Use Until Stock Is Depleted:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Meter</td>
<td>Milbank</td>
<td>UC7444-O-201</td>
<td>20</td>
<td>3 wire</td>
<td>3/31/2019</td>
</tr>
<tr>
<td>Enclosure Type</td>
<td>Manufacturer</td>
<td>Catalog No</td>
<td>Amps</td>
<td>Service Type</td>
<td>Discontinued</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Auxiliary Contacts Enclosure (AC-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aux. Contacts</td>
<td>Cooper B-line</td>
<td>644 RTSC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aux. Contacts</td>
<td>Eaton</td>
<td>1006630A-CH</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aux. Contacts</td>
<td>Durham</td>
<td>1006630A</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aux. Contacts</td>
<td>Midwest Electric Products</td>
<td>1006630A-MEP</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aux. Contacts</td>
<td>Square D</td>
<td>1006630A-SQD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>1 Phase, Ringless, 4 Terminals, 240V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Position Horizontal</td>
<td>Cooper B-line</td>
<td>HEN20432CGRST</td>
<td>200</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>2 Position Horizontal</td>
<td>Eaton</td>
<td>1006737B-CH</td>
<td>200</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>2 Position Horizontal</td>
<td>Durham</td>
<td>1006737B</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>2 Position Horizontal</td>
<td>Talon</td>
<td>UA2716-XG</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>2 Position Horizontal</td>
<td>Midwest Electric Products</td>
<td>1006737B-MEP</td>
<td>200</td>
<td>UG</td>
<td></td>
</tr>
<tr>
<td>2 Position Horizontal</td>
<td>Milbank</td>
<td>U1252-X</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>2 Position Horizontal</td>
<td>Siemens</td>
<td>SUA2716-XG</td>
<td>200</td>
<td>OH/UG</td>
<td></td>
</tr>
<tr>
<td>2 Position Horizontal</td>
<td>Square D</td>
<td>1006737B-SQD</td>
<td>200</td>
<td>UG</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. *For some enclosures the hub, top closing plate, or lugs must be ordered separately.*
2. *For all 5 Terminals, 208V service installations, order the conversion kit separately and install the 5th terminal in 9 o’clock position.*
3. *Unit supplied with hub cover plate. If hub is required order separately per Kit # listed on the interior label.*
4. *A “UT” prefix is acceptable (UT-H7213C) but the smaller grounding terminal shall not be used.*
5. *Order one Meter Enclosure and one Pre-wired Meter Panel for a complete set.*
6. *Unit supplied with Durham auxiliary line bus conversion kit #ARP01613-CH.*
7. *For all 5 Terminals, 208V service installations, order the conversion kit #MSR5KT separately and install the 5th terminal in 9 o’clock position.*
8. *Only for water heater, air conditioner, and special applications approved by Service Planning.*
CURRENT AVAILABLE TO A FAULT

1. Detroit Edison personnel no longer calculate customers secondary fault currents. It is the responsibility of the Electrical contractor, architect, consulting engineer or the local electrical inspector for new installations and those who make changes to the original electrical design, resulting in a change of service conductor size and/or transformer size for proper secondary fault current calculations.

2. Residential single occupancy home services will supply 10,000 amperes or less to a fault and, therefore, need not be calculated.

3. The person responsible for the service entrance design and installation may use the calculated value to comply with 2005 NEC 110.9; Interrupting Rating, 110.10; Circuit Impedance and Other Characteristics, and 230.95; Ground-Fault Protection of Equipment.

4. Detroit Edison personnel will not advise on service entrance equipment or design requirements for the available fault current.

5. Requests by the Electrical contractor, architect, consulting engineer or the local electrical inspector should be submitted to a service Planner for new or existing transformer size/type for their calculation of secondary fault current with the proper impedances.

SERVICE PLANNER:
Will advise customers of the DTE Energy informational websites for proper Transformer Impedances and other related topics.

Information about electric service including Transformer Impedances for Detroit Edison's power distribution transformers necessary for calculating available fault current is available on the DTE Energy website www.dteenergy.com, under Business, Builders/Contractors, Electric Service, and Service Information.
SERVICE ENTRANCE AND METERING EQUIPMENT
FOR MULTIPLE OCCUPANCY BUILDINGS

I. SINGLE-PHASE SERVICE TO TENANTS

There are two methods of installing DTE Electric metering equipment in multiple occupancy buildings for single-phase service to tenants:

Method One: Electrical contractor will furnish DTE approved standard single meter enclosures, which the electrical contractor will install using trough, conduit or other suitable means. They may also be mounted on panels along with the over-current devices. Sealing arrangements and separation of metered and unmetered conductors must be approved by DTE Electric.

NOTE: Service into the bottom of the meter enclosure from the trough and load out the top of the meter enclosure is **NOT ALLOWED**.

Method Two: DTE Electric will list the manufacturer and catalog numbers of multiple meter equipment, which has been accepted for metering tenant accounts in multiple occupancy buildings. This equipment will be purchased, installed, owned, and maintained by the building owner. Purchase will be from independent distributors of the approved equipment on the list. Consult manufacturers for the names of distributors in this area.

Meter equipment manufacturers and catalog numbers are listed in section 5-8. These are the only units of such equipment that are acceptable for the use of metering new DTE Electric tenant accounts in multiple occupancy buildings.

II. THREE PHASE SERVICE TO TENANTS

For services not exceeding 240V see the two methods above for installing DTE Electric metering equipment in multiple occupancy buildings for three-phase service to tenants.

For three-phase 277/480V, 200A, commercial multi-metering applications use: **Method One** above or a Commercial metering switchboard manufactured by a company listed on page 5-6-12 and using meter sockets preapproved by DTE Electric for single position 480V meter enclosures as listed in section 5-8 “Three Phase, Ringless, Self Contained, 7 Terminals, 480V, With Lever Bypass And Jaw Release”. Indoor installations require a Main Switch or Circuit Breaker. No unused metering positions are allowed. See 5-3-12 for reference. See 5-3-26 and 5-3-27 for inspection routine.

NOTE: The standard metering for new DTE Electric three-phase accounts is the S-base (socket) polyphase solid-state meter. These include a lever bypass and jaw release for 277/480V self-contained meter sockets.
<table>
<thead>
<tr>
<th>Page</th>
<th>Year</th>
<th>Revision Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-01-01</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-01-02</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-01-03</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-01-04</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-01-05</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-01-07</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-01-08</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-01-09</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-01-10</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-02-01</td>
<td>Jan-10</td>
<td></td>
</tr>
<tr>
<td>05-03-01</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-03-02</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-03-03</td>
<td>Nov-09</td>
<td></td>
</tr>
<tr>
<td>05-03-04</td>
<td>Aug-18</td>
<td>Clarified max load amperes</td>
</tr>
<tr>
<td>05-03-05</td>
<td>Feb-16</td>
<td>Removed reference to CL 100 meter box</td>
</tr>
<tr>
<td>05-03-06</td>
<td>Aug-18</td>
<td>Changed max demand load to 320 A in note 8</td>
</tr>
<tr>
<td>05-03-07</td>
<td>Aug-18</td>
<td>Changed max demand load to 320 A in note 7</td>
</tr>
<tr>
<td>05-03-08</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-03-09</td>
<td>Nov-20</td>
<td>Added commercial metering switchboard option</td>
</tr>
<tr>
<td>05-03-10</td>
<td>Sep-19</td>
<td>Added note 14</td>
</tr>
<tr>
<td>05-03-11</td>
<td>Aug-19</td>
<td>Added 6 meter high option</td>
</tr>
<tr>
<td>05-03-12</td>
<td>Nov-20</td>
<td>New spec</td>
</tr>
<tr>
<td>05-03-13</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-03-14</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-03-15</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-03-16</td>
<td>Dec-06</td>
<td></td>
</tr>
<tr>
<td>05-03-17</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-03-18</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-03-19</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-03-19.1</td>
<td>Feb-18</td>
<td>Specified entrance of metal conduit into meter socket, note 1</td>
</tr>
<tr>
<td>05-03-19.2</td>
<td>Aug-01</td>
<td></td>
</tr>
<tr>
<td>05-03-20</td>
<td>Dec-06</td>
<td></td>
</tr>
<tr>
<td>05-03-21</td>
<td>Dec-06</td>
<td></td>
</tr>
<tr>
<td>05-03-22</td>
<td>Oct-17</td>
<td>Added NEC meter box note</td>
</tr>
<tr>
<td>05-03-23</td>
<td>Sep-04</td>
<td></td>
</tr>
<tr>
<td>05-03-24</td>
<td>Sep-04</td>
<td></td>
</tr>
<tr>
<td>05-03-25</td>
<td>Sep-04</td>
<td></td>
</tr>
<tr>
<td>05-03-26</td>
<td>Nov-20</td>
<td>Clarified number of conductors per conduit</td>
</tr>
<tr>
<td>05-03-27</td>
<td>Nov-20</td>
<td>Clarified number of conductors per conduit</td>
</tr>
<tr>
<td>05-04-01</td>
<td>Oct-19</td>
<td>Updated 3. Building Owner Responsibilities</td>
</tr>
<tr>
<td>05-04-02</td>
<td>Nov-09</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>05-04-03</td>
<td>Nov-09</td>
<td></td>
</tr>
<tr>
<td>05-04-04</td>
<td>Nov-09</td>
<td></td>
</tr>
<tr>
<td>05-04-05</td>
<td>Jun-06</td>
<td></td>
</tr>
<tr>
<td>05-04-06</td>
<td>Nov-09</td>
<td></td>
</tr>
<tr>
<td>05-04-07</td>
<td>Aug-20 Added minor detail regarding the Meter enclosure to CT cab conduit attachment location</td>
<td></td>
</tr>
<tr>
<td>05-04-08</td>
<td>Aug-20 Added minor detail regarding the Meter enclosure to CT cab conduit attachment location</td>
<td></td>
</tr>
<tr>
<td>05-04-09</td>
<td>Oct-17 Added NEC meter box note</td>
<td></td>
</tr>
<tr>
<td>05-04-10</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-04-11</td>
<td>Dec-90</td>
<td></td>
</tr>
<tr>
<td>05-04-12</td>
<td>Aug-18 Corrected meter conduit locations</td>
<td></td>
</tr>
<tr>
<td>05-04-13</td>
<td>Mar-95</td>
<td></td>
</tr>
<tr>
<td>05-04-14</td>
<td>Oct-06 Added "(line)" after "service" on bottom drawing</td>
<td></td>
</tr>
<tr>
<td>05-04-15</td>
<td>Nov-20 Clarified number of conductors per conduit</td>
<td></td>
</tr>
<tr>
<td>05-04-16</td>
<td>Nov-20 Clarified number of conductors per conduit</td>
<td></td>
</tr>
<tr>
<td>05-04-17</td>
<td>Nov-20 Clarified number of conductors per conduit</td>
<td></td>
</tr>
<tr>
<td>05-04-18</td>
<td>Nov-20 Clarified number of conductors per conduit</td>
<td></td>
</tr>
<tr>
<td>05-04-19</td>
<td>Nov-19 Removed form 5S option from 1.</td>
<td></td>
</tr>
<tr>
<td>05-04-20</td>
<td>Oct-17 Added NEC meter box note</td>
<td></td>
</tr>
<tr>
<td>05-05-01</td>
<td>Jan-08</td>
<td></td>
</tr>
<tr>
<td>05-05-03</td>
<td>Jan-08</td>
<td></td>
</tr>
<tr>
<td>05-06-01</td>
<td>Jun-06</td>
<td></td>
</tr>
<tr>
<td>05-06-1.1</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-06-02</td>
<td>Dec-90</td>
<td></td>
</tr>
<tr>
<td>05-06-2.1</td>
<td>Dec-90</td>
<td></td>
</tr>
<tr>
<td>05-06-03</td>
<td>Oct-17 Added NEC meter box note</td>
<td></td>
</tr>
<tr>
<td>05-06-04</td>
<td>Dec-06</td>
<td></td>
</tr>
<tr>
<td>05-06-05</td>
<td>Dec-90</td>
<td></td>
</tr>
<tr>
<td>05-06-06</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-06-07</td>
<td>Dec-90</td>
<td></td>
</tr>
<tr>
<td>05-06-08</td>
<td>Dec-90</td>
<td></td>
</tr>
<tr>
<td>05-06-09</td>
<td>Dec-90</td>
<td></td>
</tr>
<tr>
<td>05-06-10</td>
<td>Dec-90</td>
<td></td>
</tr>
<tr>
<td>05-06-11</td>
<td>Jan-08</td>
<td></td>
</tr>
<tr>
<td>05-06-12</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-06-13</td>
<td>Nov-20 Clarified number of conductors per conduit</td>
<td></td>
</tr>
<tr>
<td>05-06-14</td>
<td>Nov-20 Clarified number of conductors per conduit</td>
<td></td>
</tr>
<tr>
<td>05-06-15</td>
<td>Nov-20 Clarified number of conductors per conduit</td>
<td></td>
</tr>
<tr>
<td>05-07-01</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-07-02</td>
<td>Oct-06</td>
<td></td>
</tr>
<tr>
<td>05-07-04</td>
<td>Dec-90</td>
<td></td>
</tr>
<tr>
<td>05-07-05</td>
<td>Mar-95</td>
<td></td>
</tr>
<tr>
<td>05-08-01</td>
<td>Sep-04</td>
<td></td>
</tr>
<tr>
<td>05-08-02</td>
<td>Oct-19 Aug: Added 3ph 200A 5 position module. Oct: Added 1ph 200A 5 position module</td>
<td></td>
</tr>
<tr>
<td>05-08-03</td>
<td>Jan-17 Cutler-Hammer changed to Eaton</td>
<td></td>
</tr>
<tr>
<td>05-08-3.1</td>
<td>Feb-08</td>
<td></td>
</tr>
<tr>
<td>05-08-04</td>
<td>Jul-18 Added 1200 Amp Fusible Switch 1ph and 3ph, added note 2</td>
<td></td>
</tr>
<tr>
<td>05-08-05</td>
<td>Jun-09</td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>Date</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>05-08-5.1</td>
<td>Jun-09</td>
<td></td>
</tr>
<tr>
<td>05-08-06</td>
<td>Nov-17</td>
<td>Added three phase columns</td>
</tr>
<tr>
<td>05-08-6.1</td>
<td>Jun-09</td>
<td></td>
</tr>
<tr>
<td>05-08-6.2</td>
<td>Mar-19</td>
<td>New spec</td>
</tr>
<tr>
<td>05-08-07</td>
<td>Feb-08</td>
<td></td>
</tr>
<tr>
<td>05-08-08</td>
<td>Feb-08</td>
<td></td>
</tr>
<tr>
<td>05-08-09</td>
<td>Feb-08</td>
<td></td>
</tr>
<tr>
<td>05-08-10</td>
<td>Apr-17</td>
<td>Added note 6</td>
</tr>
<tr>
<td>05-08-10.1</td>
<td>Feb-08</td>
<td></td>
</tr>
<tr>
<td>05-08-11</td>
<td>Feb-08</td>
<td></td>
</tr>
<tr>
<td>05-08-12</td>
<td>Feb-08</td>
<td></td>
</tr>
<tr>
<td>05-08-13</td>
<td>Nov-17</td>
<td>Revised some Siemens and Talon equipment information</td>
</tr>
<tr>
<td>05-08-14</td>
<td>Jul-18</td>
<td>Added discontinued equipment</td>
</tr>
<tr>
<td>05-08-15</td>
<td>Jul-18</td>
<td>Added discontinued equipment</td>
</tr>
<tr>
<td>05-08-16</td>
<td>Apr-19</td>
<td>Updated Milbank CT enclosure catalog information</td>
</tr>
<tr>
<td>05-08-17</td>
<td>Nov-17</td>
<td>Revised some Siemens and Talon equipment information</td>
</tr>
<tr>
<td>05-09-01</td>
<td>Jun-14</td>
<td></td>
</tr>
</tbody>
</table>